Optimisation

Derivative-free optimization:

From Nelder-Mead to global
methods



Definition

Optimizing a function is looking for the set of
values of the variables that will maximize (or
minimize) the function.

Optimization is usually a very complex problem.
There are many different technigues, each
being adapted to a specific kind of problems.

There Is no universal method, but a set of tools
which requires a lot of experience to be used

properly.



Optimization caracteristics

Global/local optimization

Global optimization is searching for the absolute extremum of the
function over its entire definition domain

Local optimization is looking for the extremum of the function in
the vicinity of a given point

Stochastic / deterministic methods

A stochastic method searches the definition domain of the
function in a random way . Two succesive runs can give different
results.

A deterministic method always walks the search space in the
same way, and always gives the same results.
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. ocal deterministic methods



Derivation (deterministic)

When it is possible to compute and solve
f'(x)=0, then we know that the extrema of
the function are Iin the set of solutions.

This method can only be used for very
simple analytic functions



Gradient method
(deterministic and local)

If f(X) Is a real valued .

function of a real valued -

vector X, and we can —

calculate f'(X), we compute: / / S

Xorp = X, - @ F(X,), a>0 / /\\ .
The best choice of a>0 is ( G\ | ) |

done by minimizing: O\ '-\ j
G(a)=1(X,— a F'(X,)) VAN N7 / Ny

It's usually impossible to \
solve the above equation and
approximate methods are
used.



Local, deterministic, order
2., methods.

To accelerate computation we use the
computation of the first and second order
derivatives of the function

We need to be able to compute both, in a
reasonnable amount of time.



Local, deterministic, order
2., methods.

f(y) = f(x) + £ (x) (y-x) + 72 f'(x) (y-x)* + d
We minimize the y quadratic form:

X))+ (X)(y-X)=0 =>y = x — F(X)/f’(X)
Algorithm:

X1 = X, — F (X)) 7/ (X))
Known as Newton method

Convergence Is (much) faster than the
simple gradient method.



Newton




Deterministic method;
BFGS

BFGS approximates the hessian matrix
without explicitly computing the hessian

It only requires knowledge of the first
order derivative.

It's faster than gradient, slower (but
much more practical) than Newton

One of the most used method.



BFGS




Local deterministic:
Nelder-Mead simplex

Works by building an n+1 points polytope for
an n variables function, and by shrinking,
expanding and moving the polytope.

There’s no need to compute the first or
second order derivative, or even to know the
analytic form of f(x), which makes NMS very
easy to use.

The algorithm is very simple.



Nelder-Mead simplex

Choose n+1 points (X,..X41)

Sort: 1(X1)<f(xp)...<t(Xp+1)

Compute barycenter: X, = (X;+...+x,)/n
Reflection of X, ,.1/Xy: X,=X+(Xg=X41)

If f(Xr)<f(X1), Xe:XO+2(XO_Xn+1)- If f(xe)<f(xr)’
X1 <-X., €lse X ,,<-X., back to sort.

It f(Xn)<f(Xr)’ Xc:Xn+1+(XO_Xn+1)/2- If f(xc)<f(xr)
X+1<-X., back to sort

Otherwise: x; <- X,+(X-X,)/2. Back to sort.



Nelder Mead




Part Il
Global stochastic methods



Stochastic optimization

Do not require any regularity (functions
do no even need to be continuous)

Usually expensive regarding computation
time, and do not guarantee optimality

There are some theoretical convergence

results, but they usually don’t apply in day
to day problems.



Simulated annealing

Generate one random starting point X,inside the
search space.

Build x,,,,=X,+B(0,s)
Compute: t,,.,=H(t,)
If f(X.,1)<f(X,) then keep X, .,
If f(x,.,)>f(x,) then :

If |f(X,.)-f(X,)|<e ktthen keep X,
Si |[f(X,.+0)-f(x,)|>e ktthen keep X,



Important parameters

H (the annealing schedule):

Too fast=>the algorithm converges very
quickly to a local minimum

Too slow=>the algorithm converges painfully
slowly.
Deplacement: B(0,s) must search the
whole space, and mustn’t jump too far or
too close either



Efficiency

SA can be useful on problems too difficult
for « classical methods »

Genetic algorithms are usually more
efficient when it is possible to build a
« meaningful » crossover



Genetic algorithms (GA)

Search heuristic that « mimics » the process
of natural evolution:

Reproduction/selection
Crossover
Mutation

John Holland (1960/1970)
David Goldberg (1980/1990).



Coding / population
generation

If X is a variable of f(x), to optimize on the
iInterval [X i, Xmaxl-

We rewrite X :2" (X-Xin)/ (Ximax=Xmin)

This gives an n bits string:

For n=8: 01001110
For n=16: 0100010111010010

A complete population of N (n bits string) is
generated.



Crossover

Two parents :
01100111
10010111

One crossover point (3):
011]00111
|10111

Two children:
011]10111
00111



Mutation

One randomly chosen element:
01101110

One mutation site (5):
01101110

Flip bit value:
01100110



Reproduction/selection

For each x;compute f(x))
Compute S=2(f(x))
Then for each x; :
PO)=T(x;)/S
The n elements of the new population are

picked from the pool of the n elements of the
old population with a bias equal to p(x;).

Better adapted elements are more reproduced



Exemple de reproduction

f(x)=4x(1-x)
X in [0,1]

Séquence Valeur Ulx) % de chance % cumulés Apres
de reproduction reproduction

10111010 | 0.7265625 | 0.794678 | 0.794678 [ 2.595947 = 0.31 0.31 11011110
11011110 | 0.8671875 | 0.460693 | 0.460693 / 2.595947 =0.18 | 0.31+0.18=0.49 10111010
00011010 | 0.1015625 | 0.364990 | 0.364990/2.595947 = 0.14 | 0.49+0.14=0.63 01101100
01101100 | 0.4218750 | 0.975586 | 0.975586/ 2.595947 = 0.37 | 0.62+0.37=1.00 01101100

2.595947




AG main steps

Step 1: reproduction/selection
Step 2: crossing
Step 3: mutation
Step 4: End test.




Scaling

Fact: in the « simple » AG, the fitness of
an element x is equal to f(x)

Instead of using f(x) as fitness, f is
« scaled » by using an increasing function.

Exemples:
5 (f(x)-10)/3: increase selection pressure
0.2 f + 20 : diminishes selection pressure

There are also non-linear scaling functions



Scaling examples

F(X1)=30

F(X2)=15

F(X1)=30

F(X1)=66

F(X2)=23

I
\ F(X4)=22

.

F(X3)=25

0.2F+20 5/3 (F - 10)



Sharing

Selection pressure can induce too fast
convergence to local extrema.

Sharing modifies fitness depending on the
number of neighbours of an element:

T () =T(x))/Z; s(d(x;,%;))

S Is a decreasing function.

d(X;X;) Is a distance measurement between |
et |



Sharing

To use sharing, you need a distance
function over variables space

General shape of s:

ﬁ\




Bit string coding problem

Two very different bit strings can
represent elements which are very close
to each other:

If encoding real values in [0,1] with 8 bits:

10000000 et 01111111 represent almost the
same value (1/2) but their hamming distance is
maximal (8).

Necessity to use Grey encoding.



Using a proper coding

For real variable functions, real variable
encoding is used
Crossover:
y1 = a X; + (1-a) X,
Yo = (1-a) X; + a X,
o. randomly picked in [0.5,1.5]
Mutation:
y: = X; + B(0,0)
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Alrcraft conflit resolution



Modeling

Only one manoeuver maximum by aircraft

10, 20 or 30 degrees deviation right or left
Then return to destination

Offset

Variables: 3 n
TO: start of manoeuver
T1: end of manoeuver
A: angle of deviation

Uncertainties on speeds
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B: B: 6 = Prevision 28 nn - Opti toutes les 4 mn EN COURS = Incertitude 4% 8.529489
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B: B: 6 = Prevision 28 nn - Opti toutes les 4 mn EN COURS = Incertitude 5% 8.485688

4888 | | | | | |

Jaaa - -
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-1888 - -

=2888 - -
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B: B: 6 = Prevision 28 nn - Opti toutes les 4 mn EN COURS = Incertitude 5% B8.116225
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=2888 - -
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B: B: 6 = Prevision 28 nn - Opti toutes les 4 mn EN COURS = Incertitude 5% B8.891274
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B: B: 6 = Prevision 28 nn - Opti toutes les 4 mn EN COURS = Incertitude 5% 8.383436
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2088
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B: B: 4 = Prevision 28 nn - Opti toutes les 3 mn EN COURS = Incertitude 3% 8.738458

dooe | | | | | |

6888 - -

4488 - -

2088 - -

-20808 - -

-4068 [ [ | | [ [
=48808 =-280808 a 2808 48608 Gooa G008 18888




Results

Résultats

@ Résout des gros conflits (30
avions)

@ Intégration dans un outil de

simulation (CATS/OPAS)

@ [esté sur des journées de trafic
réel

@ Peu de restrictions sur la
modélisation

@ Pas de garantie d'optimalité




Traveling Salesman
Problem (TSP)
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TSP: crossover
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TSP: new crossover
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TSP: mutation
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Ant Colony Optimization
(ACO)

Mimic the ants trying to find the shortest
path to food
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ACO

Ants deposit pheromones according to the
qguality of path

Ants more likely to follow paths with the
most pheromones

Evaporation process to prevent early
convergence

Stop when no more improvement



ACO for the TSP

Each ant builds a path

Choice of next city
iInfluenced by pheromones
already present

Ants deposit pheromons
on the path chosen

At each iteration,
pheromons evaporate




Differential Evolution

Pick:
NP vector elements population with n variables
F in [0,2] (differential weight)
CR in [0,1] (Crossover probability)

For each vector element x
Pick randomly 3 distinct vectors a,b,c in population
Pick a random index R in [1,n]
For each 1 in [1,n] pick randomly r; in [1,n]
If r<CR or i=R then y,=a,+F(b;-c;) else y;=x;
If f(y) better than f(x) replace x by y in population



Other evolutionary
technigues

Particle Swarm optimization
Evolutionary strategies
Genetic Programming



Part |1l
Global deterministic
methods



B&B and interval programming
(global deterministic methods)

With:

f(X,y) = 333.75 y° + x2 (11 x?y? - y°- 121 y* - 2)
+ 5.5y8+ x / (2y)

If we compute f(77617,33096), we get
1.172603.

The correct value is -0.827396.

Interval program was initially designed to
circumvent improper rounding.



Elementary operations

If X=[a,b] and Y=[c,d]
X+Y=[a+c,b+d] and X-Y=[a-d,b-C]
X*Y=

[ac,bd] si a=0 et ¢c=0
[bc,bd] si a=>0 et c<0<d
[bc,ad] si a>0 et d<O
[ad,bc] si a<0<b et ¢c=0
bd,ad] si a<O<b et d<0
[ad,bc] si b<0 et ¢c>0
[ad,ac] si b<0 et c<0<d
[bd,ac] si b<0 et d<O

[min(bc,ad),max(ac,bd)] si a<0<b et c<0<d




Divide

R Is extended using +oc/—cc

X/Y=
[b/c,+ o] if b<O and d=0
[- oc,b/d] and [b/c,+ o] If b<0 and c<0<d
[- oc,+ oc] If a<0<b
[- oc,a/c] if a>0 et d=0
[- c,a/c] and [a/d,+ «] If a>0 et c<0<d
[a/d,+ o] iIf a=0 and c=0



Other operations

All operations can be extended to interval
arithmetic.

For monotonous functions:
F([a,b])=[f(a),f(b)] if f is Increasing
F([a,b])=[f(b),f(a)] if f Is decreasing
Example: Exp([a,b])=[e?,e"]

Composing functions is done by composing

Interval extensions of these functions



Problems

If X=[a,b], X-X = [a-b,b-a]<>[0,0]!
In the same way (X-1)(X+1) <> X?-1
(10,2]-1)(10,2]+1)=[-1,1]*[1,3]=[-3,3]
[0,2]%-1=[0,4]-1=[-1,3]
Associativity Is preserved:
A+(B+C)=(A+B)+C
A(BC)=(AB)C
Distributivity is lost: A(B+C)<>AB+AC



Branch and bound

Generic name for all methods that divide and
cut part of the search space.

Here, search space is divided by cutting

Intervals in two, and bounds are generated
by estimating the function value over each

sub-interval.



Minimization

Set: L<-{[a,b]} et e<-estimator of f on [a,b]

Extract 1=[c,d] top of L. If e<c, redo. If | is too
small, redo. If L Is empty: end.

Build 1,=[c,(c+d)/2] and |,=[(c+d)/2,d].
Compute F(1,)=[x;,y1], F(I.)=[x,y,], €, et e,.
Set e=min(e,el,e2)

If x;<e then insert I, in L

If x,<e then insert I, in L

Back to start.



Comp

utation of the

estimator

Let X=

[a,b]. Different ways:

Easiest: e=f((a+b)/2)

Sam
Stoc
Ccom

nling: take n points equally spaced in X
nastic: draw randomly n points in X

puter f'(x) and F’(X) et check if the sign

of f'(x) is the same on X == f Is monotonous
and the extremum iIs on one side of the
Interval



How to sort the list of
InNtervals

Many ways:
First In First Out
Largest first
Best estimator first
Smaller lower bound first
etc...



End test

Many ways:
The size of the interval is smaller than a
defined value

The size of the image of the function is
smaller than a defined value

Etc...



More than one dimension

For a multiple dimension functions,
cutting is done on each variable in turn.

It's usually the largest interval which is
cut first.

The end test is modified accordingly.
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When to use It

The program computing the function can
be « easily » extended to interval
arithmetic.

Method efficient when there are not too
many variables.

In theory, computation time grows as 2N
with N being the number of variables.



Part IV
Cooperation



Cooperative algorithm

IBBA thread

Gets from shared memory best EA element
=>speeds up the cutting process

Sends to shared memory its best element

EA thread
Sends to shared memory its best element
Replace worst element with best IBBA element

Update thread
Updates admissible domains/cleans up IBBA queue

Projects EA elements into the closest box



Cooperative algorithm
Griewank D=6
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Cooperative algorithm
Statistical results

size 6 7 8 9 10
EA Found | 100 | 94 | 92 83 15
Mean (sec) | 204 | 864 | 972 | 1340 | 1678
Sigma (sec) | 92 | 356 | 389 | 430 34
IBBA Found /1 0 0 0 0
Mean (sec) | 284
Sigma (sec) | 192
Cooperative Found | 100 | 100 | 100 100 100
Mean (sec) 50 | 62 | 156 | 215 | 267
Sigma (sec) 18 | 47 | 85| 317 105




Cooperative algorithm

Useful when the extremum has to be

proved

Advantages of both algorithms and more
Faster than both IBBA and GA

Same constraints as the IBBA

Needs code that can be extended to interval
arithmetics
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