
Optimisation 

Derivative-free optimization: 
From Nelder-Mead to global 
methods 



Definition 

Optimizing a function is looking for the set of 
values of the variables that will maximize (or 
minimize) the function. 

Optimization is usually a very complex problem. 
There are many different techniques, each 
being adapted to a specific kind of problems. 

There is no universal method, but a set of tools 
which requires a lot of experience to be used 
properly.  



Optimization caracteristics 

 Global/local optimization 
Global optimization is searching for the absolute extremum of the 

function over its entire definition domain 

Local optimization is looking for the extremum of the function in 
the vicinity of a given point 

 Stochastic / deterministic methods 
A stochastic method searches the definition domain of the 

function in a random way . Two succesive runs can give different 
résults. 

A deterministic method always walks the search space in the 
same way, and always gives the same results. 
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Part I 
Local deterministic methods 



Derivation (deterministic) 

When it is possible to compute and solve 
f’(x)=0, then we know that the extrema of 
the function are in the set of solutions. 
This method can only be used for very 

simple analytic functions 



Gradient method 
(deterministic and local) 

 If f(X) is a real valued 
function of a real valued 
vector X, and we can 
calculate f’(X), we compute: 

 Xn+1 = Xn - a f’(Xn), a>0 
 The best choice of a>0 is 

done by minimizing: 
 G(a)=f(Xn– a f’(Xn)) 
 It’s usually impossible to 

solve the above equation and 
approximate methods are 
used. 



Local, deterministic, order 
2, methods. 

To accelerate computation we use the 
computation of the first and second order 
derivatives of the function 
We need to be able to compute both, in a 

reasonnable amount of time. 



Local, deterministic, order 
2, methods. 

f(y) = f(x) + f’(x) (y-x) + ½ f’’(x) (y-x)2 + d 

We minimize the y quadratic form: 
f’(x)+f’’(x)(y-x)=0 => y = x – f’(x)/f’’(x) 

Algorithm: 
xn+1 = xn – f’(xn) / f’’(xn) 

Known as Newton method 
Convergence is (much) faster than the 

simple gradient method. 



Newton 



Deterministic method: 
BFGS 

BFGS approximates the hessian matrix 
without explicitly computing the hessian 
It only requires knowledge of the first 

order derivative. 
It’s faster than gradient, slower (but 

much more practical) than Newton 
One of the most used method.  

 
 



BFGS 



Local deterministic: 
Nelder-Mead simplex 

Works by building an n+1 points polytope for 
an n variables function, and by shrinking, 
expanding and moving the polytope. 
There’s no need to compute the first or 

second order derivative, or even to know the 
analytic form of f(x), which makes NMS very 
easy to use. 
The algorithm is very simple. 



Nelder-Mead simplex 

Choose n+1 points (x1,..xn+1) 
Sort: f(x1)<f(x2)…<f(xn+1) 
Compute barycenter: x0 = (x1+…+xn)/n 
Reflection of xn+1/x0: xr=x0+(x0-xn+1) 
If f(xr)<f(x1), xe=x0+2(x0-xn+1). If f(xe)<f(xr), 

xn+1<-xe, else xn+1<-xr, back to sort. 
If f(xn)<f(xr), xc=xn+1+(x0-xn+1)/2.If f(xc)<f(xr) 

xn+1<-xc, back to sort 
Otherwise: xi <- x0+(xi-x1)/2. Back to sort. 



Nelder Mead 



Part II 
Global stochastic methods 



Stochastic optimization 

Do not require any regularity (functions 
do no even need to be continuous) 
Usually expensive regarding computation 

time, and do not guarantee optimality 
There are some theoretical convergence 

results, but they usually don’t apply in day 
to day problems. 



Simulated annealing 

Generate one random starting point x0inside the 
search space. 
Build xn+1=xn+B(0,s) 
Compute: tn+1=H(tn) 
If f(xn+1)<f(xn) then keep xn+1 

If f(xn+1)>f(xn) then : 
If |f(xn+1)-f(xn)|<e- k t then keep xn+1 

Si |f(xn+1)-f(xn)|>e- k t then keep xn 



Important parameters 

H (the annealing schedule): 
Too fast=>the algorithm converges very 

quickly to a local minimum 
Too slow=>the algorithm converges painfully 

slowly. 

Deplacement: B(0,s) must search the 
whole space, and mustn’t jump too far or 
too close either 



Efficiency 

SA can be useful on problems too difficult 
for « classical methods » 
Genetic algorithms are usually more 

efficient when it is possible to build a 
« meaningful » crossover 



Genetic algorithms (GA) 

Search heuristic that « mimics » the process 
of natural evolution: 
Reproduction/selection 
Crossover 
Mutation 

John Holland (1960/1970) 
David Goldberg (1980/1990). 



Coding / population 
generation 

If x is a variable of f(x), to optimize on the 
interval [xmin,xmax]. 
We rewrite x :2n (x-xmin)/(xmax-xmin) 
This gives an n bits string: 
For n=8: 01001110 
For n=16: 0100010111010010 

A complete population of N (n bits string) is 
generated. 



Crossover 

Two parents : 
01100111 
10010111 

One crossover point (3): 
011|00111 
100|10111 

Two children: 
011|10111 
100|00111 



Mutation 

One randomly chosen element: 
01101110 

One mutation site (5): 
01101110 

Flip bit value: 
01100110 

 



Reproduction/selection 

For each xi compute f(xi) 
Compute S=Σ(f(xi)) 
Then for each xi : 
p(xi)=f(xi)/S 

The n elements of the new population are 
picked from the pool of the n elements of the 
old population with a bias equal to p(xi). 
Better adapted elements are more reproduced 



Exemple de reproduction 

f(x)=4x(1-x)  
x in [0,1[ 



AG main steps 

Step 1: reproduction/selection 
Step 2: crossing 
Step 3: mutation 
Step 4: End test. 



Scaling 

Fact: in the « simple » AG, the fitness of 
an element x is equal to f(x) 
Instead of using f(x) as fitness, f is 

« scaled » by using an increasing function. 
Exemples: 
 5 (f(x)-10)/3: increase selection pressure 
 0.2 f + 20 : diminishes selection pressure 

There are also non-linear scaling functions 



Scaling examples 



Sharing 

Selection pressure can induce too fast 
convergence to local extrema. 
Sharing modifies fitness depending on the 

number of neighbours of an element: 
fs(xi)=f(xi)/Σj s(d(xi,xj)) 
s is a decreasing function. 
d(xi,xj) is a distance measurement between i 

et j 



Sharing 

To use sharing, you need a distance 
function over variables space 
General shape of s: 



Bit string coding problem 

Two very different bit strings can 
represent elements which are very close 
to each other: 
If encoding real values in [0,1] with 8 bits: 
10000000 et 01111111 represent almost the 

same value (1/2) but their hamming distance is 
maximal (8). 

Necessity to use Grey encoding. 



Using a proper coding 

For real variable functions, real variable 
encoding is used 
Crossover: 
y1 = α x1 + (1-α) x2 

y2 = (1-α) x1 + α x2 

α randomly picked in [0.5,1.5] 

Mutation: 
y1 = x1 + B(0,σ)  

 





Aircraft conflit resolution 



Modeling 

Only one manoeuver maximum by aircraft 
10, 20 or 30 degrees deviation right or left 
Then return to destination 

Offset 

Variables: 3 n 
T0: start of manoeuver 
T1: end of manoeuver 
A: angle of deviation 

Uncertainties on speeds 
 





 



 



 



 



 



Results 



Traveling Salesman 
Problem (TSP) 



TSP: crossover 



TSP: new crossover 



TSP: mutation 



Ant Colony Optimization 
(ACO) 

Mimic the ants trying to find the shortest 
path to food 



ACO 

Ants deposit pheromones according to the 
quality of path 
Ants more likely to follow paths with the 

most pheromones 
Evaporation process to prevent early 

convergence 
Stop when no more improvement 



ACO for the TSP 

Each ant builds a path 
Choice of next city 

influenced by pheromones 
already present 
Ants deposit pheromons 

on the path chosen 
At each iteration, 

pheromons evaporate 



Differential Evolution 

Pick: 
NP vector elements population with n variables 
F in [0,2] (differential weight) 
CR in [0,1] (Crossover probability) 

For each vector element x 
Pick randomly 3 distinct vectors a,b,c in population 
Pick a random index R in [1,n] 
For each i in [1,n] pick randomly ri in [1,n] 

• If ri<CR or i=R then yi=ai+F(bi-ci) else yi=xi 

If f(y) better than f(x) replace x by y in population 
 



Other evolutionary 
techniques 

Particle Swarm optimization 
Evolutionary strategies 
Genetic Programming 
….. 



Part III 
Global deterministic 

methods 



B&B and interval programming 
(global deterministic methods) 

With:  
   f(x,y) = 333.75 y6 + x2 (11 x2y2 - y6 - 121 y4 - 2) 

+ 5.5 y8 + x / (2y) 
If we compute f(77617,33096), we get 

1.172603. 
The correct value is -0.827396. 
Interval program was initially designed to 

circumvent improper rounding. 



Elementary operations 
 If X=[a,b] and Y=[c,d] 

 X+Y=[a+c,b+d] and X-Y=[a-d,b-c] 

 X*Y= 
[ac,bd] si a>0 et c>0 

[bc,bd] si a>0 et c<0<d 

[bc,ad] si a>0 et d<0 

[ad,bc] si a<0<b et c>0 

[bd,ad] si a<0<b et d<0 

[ad,bc] si b<0 et c>0 

[ad,ac] si b<0 et c<0<d 

[bd,ac] si b<0 et d<0 

[min(bc,ad),max(ac,bd)] si a<0<b et c<0<d 



Divide 

R is extended using +∝/−∝ 
X/Y= 
[b/c,+ ∝] if b<0 and d=0 
[- ∝,b/d] and [b/c,+ ∝] if b<0 and c<0<d 
[- ∝,+ ∝] if a<0<b 
[- ∝,a/c] if a>0 et d=0 
[- ∝,a/c] and [a/d,+ ∝] if a>0 et c<0<d 
[a/d,+ ∝] if a>0 and c=0 



Other operations 

All operations can be extended to interval 
arithmetic. 
For monotonous functions: 
F([a,b])=[f(a),f(b)] if f is increasing 
F([a,b])=[f(b),f(a)] if f is decreasing 
Example: Exp([a,b])=[ea,eb] 

Composing functions is done by composing 
interval extensions of these functions 



Problems 

If X=[a,b], X-X = [a-b,b-a]<>[0,0]! 
In the same way (X-1)(X+1) <> X2-1 
([0,2]-1)([0,2]+1)=[-1,1]*[1,3]=[-3,3] 
[0,2]2-1=[0,4]-1=[-1,3] 
Associativity is preserved: 
A+(B+C)=(A+B)+C 
A(BC)=(AB)C 

Distributivity is lost: A(B+C)<>AB+AC 



Branch and bound 

Generic name for all methods that divide and 
cut part of the search space. 
Here, search space is divided by cutting 

intervals in two, and bounds are generated 
by estimating the function value over each 
sub-interval. 



Minimization 

Set: L<-{[a,b]} et e<-estimator of f on [a,b] 
Extract I=[c,d] top of L. If e<c, redo. If I is too 

small, redo. If L is empty: end. 
Build I1=[c,(c+d)/2] and I2=[(c+d)/2,d]. 
Compute F(I1)=[x1,y1], F(I2)=[x2,y2], e1 et e2. 
Set e=min(e,e1,e2) 
If x1<e then insert I1 in L 
If x2<e then insert I2 in L 
Back to start. 

 



Computation of the 
estimator 

Let X=[a,b]. Different ways: 
Easiest: e=f((a+b)/2) 
Sampling: take n points equally spaced in X 
Stochastic: draw randomly n points in X 
Computer f’(x) and F’(X) et check if the sign 

of f’(x) is the same on X => f is monotonous 
and the extremum is on one side of the 
interval 
 



How to sort the list of 
intervals 

Many ways: 
First In First Out 
Largest first 
Best estimator first 
Smaller lower bound first 
etc… 



End test 

Many ways: 
The size of the interval is smaller than a 

defined value 
The size of the image of the function is 

smaller than a defined value 
Etc… 



More than one dimension 

For a multiple dimension functions, 
cutting is done on each variable in turn. 
It’s usually the largest interval which is 

cut first. 
The end test is modified accordingly. 





When to use it 

The program computing the function can 
be « easily » extended to interval 
arithmetic. 
Method efficient when there are not too 

many variables. 
In theory, computation time grows as 2N 

with N being the number of variables. 



Part IV 
Cooperation 



Cooperative algorithm 
IBBA thread 
Gets from shared memory best EA element 
=>speeds up the cutting process 

Sends to shared memory its best element 

EA thread 
Sends to shared memory its best element 
Replace worst element with best IBBA element 

Update thread 
Updates admissible domains/cleans up IBBA queue 
Projects EA elements into the closest box 



Cooperative algorithm 
Griewank D=6 



Cooperative algorithm 
Statistical results 



Cooperative algorithm 

Useful when the extremum has to be 
proved 
Advantages of both algorithms and more 
Faster than both IBBA and GA 

Same constraints as the IBBA 
Needs code that can be extended to interval 

arithmetics 
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