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ABSTRACT

Partial separation is a mathemati-
cal technique that has been used in op-
timization for the last 15 years. On
the other hand, genetic algorithms are
widely used as global optimizers. This
paper investigates how partial separa-
bility can be used in conjunction with
GA. In the first part of this paper,
a crossover operator designed to solve
partially separable global optimization
problems involving many variables s in-
troduced. Then, a theoretical analysis
is presented on a test case, along with
practical experiments on fixed size pop-
ulations, with different kinds of selection
methods.
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introduced to solve this problem. When using real variable
coding, programmers very often use arithmetic crossover.
However, none of these methods recognizes and favors good
schemes. Heuristics are sometimes used to favor “good”
crossovers and “good” mutations (Ravetel.1995) or try to
reduce disruption of superior building blocks (Corcorad an
Wainright 1996).

We will show in this paper that taking advantage of the
structure of partially separable functions to define a new
crossover operator improves the converging speed and con-
verging rate of a genetic algorithm.

1 Partial separability

1.1 Definition

Partially separable problems considered in this paper theve
following characteristics: the functiafito minimize depends
onn variablese, zs, .., z, (n large) and is a sum of pos-
itive functionsF; involving only a subset of variables. Par-

tially separable functions can be written:

Introduction m
F(I‘[,J}Q, cey In,) = ZFi(J}jlam‘sz cy ‘E]nl)

This paper deals with minimization problems for which the —

function to minimize is the sum of many positive terms, each
term only involving a subset of variables. Griewankand Toin1.2  Adapted crossover principle
gave.first definition of such functions (i.e partially ;e;tﬂea The crossover operator introduced in this article does not
functions) about 15 years ago (Griewank and Toint 1982)aquire any particular coding. The chromosome is directly
Properties of partial separability are commonly used twesol ¢odeqd with the variables of the problem (these variables may
local optimization problems. be real, integer,...). The intuitive idea is the followirfgr

On the other hand, it is quite widely accepted that on reaj completely separable problem, optimizing the global func
problems, when a crossover operator that makes sense Cg@n can be done by optimizing each variable separatelys Thi
be defined, the efficiency of GA (compared to other StOChaSs'trategy is adapted to partially separable functions. Viéhen
tic optimization methods) is closely related to the use Ofating a child from two parents, the idea is to take for each

the crossover operator: considering large size problemes, t yariaple the one that locally fits better (more or ldsswhere
use of random crossover operator can penalize GAs perfol controls the determinism of the operator).

mance. Classical crossover operators described in the lit- First, we define docal fitnessGy (w1, z3, .., ) for vari-
erature (Goldberg 1989, Michalewicz 1992, Holland 1975)ablexk as follows: ‘

create two children from two parents chosen in the popula-

tion. Initial operators on bit strings simply cut the two par G ) = Z Fi(zj,, 25, -, %5,,)

ents strings in two parts. The main drawback of these opera- BT 82, s En) = , n;

tors is that short schemes have a greater probability toveurv 1€

than long ones. Consequently the encoding problem becomesghereS;, is the set of such asey, is a a variable of; andn;
very important. Multi-points crossovers and Gray codes ar¢he number of variables df;.




Intuitively, the local fitness associated to a variabledtes Forz = (x1, s, ..2,), we define the local fitnesSy (x)
its contribution to the global fitneksFurthermore, it has the by:

followi d ty: u
ollowing good property Gi(z) = %Za(m,xi)
i=1

> Grlwr,za, o) = Flen, 2, 0) We definel (z) as the number of bits equal to 14n Then, it
k=1 is easy to establish that:
When minimizingF, if:

F(z) = I(z)(n—I(z))
Gr(parenty) < Gg(parenty) — A Gi(z) = I(z) if ex =0
: 2
then childl will contain variabler;, of parentl. Else, if: n—I(x) T 1
= _— 1 T =
2

Gr(parent1) > Gi(parents) + A . _ .
In the following paragraphs, we use a classigapoint

then childl will contain variablex;, of parent2. If: crossover operatord; and A, represent parents randomly
chosen in a population ard represents their child.
|G (parentt) — Gi(parents)| < A In paragraph 2.1, the probability of fitness increase when

using the adapted or the classical crossover operator are co
then variabler,, of child 1 will be randomly chosen, or can pared. Then, the adapted crossover converging rate is com-
be a random linear combination of thé" variable of each puted in a simple genetic algorithm, with no selection and no
parent when dealing with real variables. If the same styategmutation (paragraph 2.2). In paragraph 2.3, a GA with selec-
is applled to childl and to child2, children may be identi- tionis used to compare the two crossovers
cal, especially ifA is small. This problem can be avoided by . . .
taking a new pair of parents for each child. 2.1 Probability of fitness increase

Let's consider the following completely separable funatio For function (1), the probability of fitness increase wheings
the classical or the adapted operator can be mathematically
F(z1,29,23) = 21 + 22 + 23 computed for every possible couple of parents.
Let’s defineP,_1(7, j, k) as the probability to find: bits
for 21, x5 andz3 integers include if0, 2]. Variablek’s local  equal tol at the same positionin both parertsand A, with
fithess isiG (z1, x9, #3) = x4. Let's cross parentsl , 0, 2)  I(A1) = iandI(As) = j. As Pi_q(i, 5, k) = Pi=a(4, 4, k),
and (2, 1, 0) which have the same fitneds = 3. With  we will suppose that < j in the following. It can be shown
A =0, childl willbe (1,0,0): F = 1. WithA =1, that
child2 may be(2, 1, 0), (2,0, 0), (1,1, 0),or(1,0,0).
The children’s fitness are always better than the parenesgtn ¢ if & > i, then:
whenA = 0 which is not the case with a classical crossover Pi_q(i,j k) =0
operator. . )
As itis completely separable, this function is obviouslgto ~ ® if # < i, then:
simple to show the interest of the adapted crossover operato E_1 . ie1 )
In the next paragraph, a simple partially separable functio Pi_i(i,j, k) = CF H J~ H (n—0)—-(—*k)
is introduced and the improvement achieved is theoregicall ' il i n—lI
measured.

) The classical crossover used is thgoint crossover that
2 Theoretical study randomly chooses bits from; or A; (the order of the bit
string has no influence on the fitness).
For the adapted crossover (respectively for the classical
, _ o crossover), let's defind, (4, j, k) (resp. P.(i,j,k)) as the
Plav s wan) = ), d@iz)) @ Orobability that if(4) = i andI(As) = j thenI(C) = k.
As P,(i,j, k) = P,(j,i,k) and P.(i, j, k) = P.(j,i,k), we
(21,9, .., x,) iS @ bit string ands(w;, z;) = 1if z; # x; will suppose that < j in the following. Then, it can be
and0 if z; = «;. It must be noticed that the function is only Shown that for the classical crossover:

Let’s define the following function:

0<iZj<n

partially separable and haglobal minima,(1, 1,1, ..,1)and min (k,i+j—k) !
. . i+j—21
(0;0;0;..;0)- Pc(l;,};k) = Z Pl—l(l;,};l) 21,’Z+‘}']—2l
1There are often many different ways to define a local fitneas ¢an I=max (0, titl=n)

favour more or less competing optima. Discussing this sulijethe present
paper would be too long.
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Figure 1 Prob(F(C) > max[F (A1), F'(A2)]) function of [I(A,), I(As)] - classical crossover n = 50 .
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For the adapted crossover(with = min(k, n — k)): Itis obviously useless to expect that the same GA using the

o o o classical crossover converges. In fact, we have:
it+j<n: Pui,j k)= Pi_1(i,],k)

k

i+j>n: Pyi,j,k)= Pii(n—i,n—jn—k) Ym € N, Qu(m, k) = S_:

m Cf_]_?
itj=n: Pijk)= D Pii(iil) gimr 2.3 Selection probability

=0 As the fitness function takes its valueginn? /4], we will se-
As Py_1(1,7,k) = 0if & > min(¢, j), then: lect chromosomes proportionallytd /4 — F/(A). Let’s study

the simple GA that selects individuals according to the jprev

o if i+ j <nandk > min(i, j), thenPy(i,j, k) = 0 ous criteria and then uses the adapted or classical crassove

Therefore, let's define, (m, k) andS, (m, k) as the proba-
bility that 7(C) = k if C is a randomly chosen element at
Consequently: generationn, just after the selection operator.

Then, it is easy to prove that:

o if i+ j > nandk < max(7,j), thenP,(7,5,k) =0

o ifi+j<nandP,(i,j,k) >0,

thenk < min(i,j,n —i,n — j) Sumal k) = nsa(m+1,k)
. .. > koo Sa(m+1,k)
e ifi+j>nandP,(i,j,k) >0,
thenk > max(i,j,n —i,n — j) S.(m+1,k) = nsc(m-l-l,k)
‘ D k=0 Se(m+1,k)

Thus, ifi + j # n, thenF(C) > max[F (A1), F(As)]. If )
i+ j = n, local fitness of variables of each parent are equa‘f‘”th 9
and the adapted crossover behaves like a classigaints H(k) = nz —k(n—k)
Crossover.

Figures 1 and 2 give the probability for a child to have a bet- . ) .
ter fitness than its parents (for all the possible combimatio sa(m+1,k) = Z Z H (k) Sa(m, i) Sa(m, j) Pa(i, j k)
of parents). On this example, the adapted crossover widely 1=07=0
improves crossover efficiency. The small square in the cen- ) ) o
ter of figure 1 represents a probability of improvement large se(m+1,k) = H (k) Se(m, i) Sc(m, j) Pe(i, j, k)
than0.5. It becomes a very large square on figure 2. 1=0j=0

. On figure 4, the four curves on the top represgytim, 0)
2.2 Adapted crossover converging rate for chromosomes of siz&0, 50, 100 and200 bits. The four

As P, and P, are known, it is possible to evaluate the proba-.;,es on the bottom represefit(m, 0) for chromosomes of
bility to find an optimal solution after: generations. The GA  ¢i;0590 50. 100 and200. '

on!y uses a crossover operator without any select_ipn, Or MU- The efficiency of the adapted crossover appears clearly,

tation operator. Let's defin@.(m, k) as the probability that 5 ticyiarly for large sized chromosomes. The converging

I(C) = kif C'is a randomly chosen element at generation 4te js not very dependent on the size of the chromosome with

m. At generatiord: the adapted crossover, whereas itis very dependent orethe si
c* of the chromosome with the classical crossover.

Qa(oﬂ k) = 2_:

n n

3 Experimental tests

In the previous study, the size of the population was not lim-
n n ited. However, population size does have an influence on the
Qa(m+1,k) => > Qa(m, i) Qu(m, j) Pu(i, j, k) converging rate. Moreover, the previous example has nly
i=0 j=0 global optima and we did not measure the ability of the GA to
find every global optimum. We are going to tackle these two
Figure 3 gives the evolution @@, (m,0) = Q.(m,n) for  jssues in this section.
different values ofz. It appears that the probability to find | et's consider the same function as previously:
(0,0,0..,0) or (1,1,1.., 1) stabilizes arounc% after genera-
tion 7. It was decided that when local fitness are equal, the F(zy, .., 2,) = Z (i, 25) (2)
crossover used was the classical crossover. If it had been de 1<iZj<n '
cided that each time local fithess are equal, the same parent
would give its value to the child, then probabilities to find but withz; integer in[0, 4].
(0,0,0..,0)0r (1,1, 1.., 1) would have stabilized aroung It This function hass optima defined by/(i, j) z; = z;. In
is important to note that has little influence on the conver- Paragraph 3.1, classical and adapted crossover operaors a
gence speed. compared in a simple GA, similar to the theoretical model.

At generationn + 1:
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The number of optima found and the converging speeds
are compared. In paragraph 3.2, a sharing operator is added
to find as many optima as possible. The efficiency of classical | )
and adapted crossover are also measured. g

3.1 GA without sharing

Function (2) is optimized with a GA dz00 runs (generations:
1000, population size’500, proportion crosseds0%, selec-

tion: stochastic reminder without replacement, elitisras,y
sharing: no, mutation:no). The firs00 tests are done with
a classical point crossovér. The 100 other tests are done & | et |
with the adapted crossover previously described. ’

Figure 5 gives the number of runs for which 1, 2, 3 or 4
optima are found when using the adapted crossover. Itisim- o; = - 000
portant to note that the 5 optima are never found. The figure. | generaton (09 ,
also gives the number of runs for which 1 optimum is found™19ure 7 percentage of improved chromosome with the
when using the classical crossover. The GA with classicaflassical crossover without and with sharing.

classical crossover with sharing---

60 - B

0L Tl R

ercentage of children improved by cros:

crossover never finds 2 optima. 100 : ,
3.2 GA Wlth Sharlng %0l \\\\\\ adapted crossover with sharing--- i
The GA is performed on the same function, but with a shag  s! 1

ing process. Therefore, a distance between two chromosondes
is defined. Let's definé(C;, Cs) as the Hamming distance £ y
between chromosomieand?. If » is the size of the chromo- or ; 1
some, then let's define:

"
70 + %, g

50 - % 4

40 \ g

percentage of children improv
-

Dist(Cy,Cy) = 1, if h(Ch,Cy) < % | |
0, otherwise ol Y |
andN (C;) the number of chromosomés in the population 10 } 1
for which Dist(C;, C;) = 0. The sharing process used inthe i | s J
following divides the fitness of chromoson@® by N (C;) ! T generatonog)
before applying the selection process. Figure 8 percentage of improved chromosome with the

Figure 6 gives the number of runs for which the 5 optimaadapted crossover without and with sharing.
are found when using the adapted crossover and sharing. The

figure also gives the number of runs for which 1 or 2 Optimathe 5 optima are always found before generationits seems

are fo.und whgn using the classical crossover and sharirey. T}fhat the sharing process has little influence on the comgrgi
GA with classical crossover and sharing never finds more tha][}ﬂe

2 optima.

3.3 Influence of sharing 4 Classical test functions

A “good” crossover can be defined as a crossover for whicly 1 corana’s function
the fitness of the child is better than the fitness of both garen __ . o .
. . This function is presented in (Coraret al. 1987). We
In order to measure the influence of sharing on the crossover -~ O ;
. : : w use here the restriction used by Ingber in its article (Ingbe
efficiency, figures 7 (resp 8) give the percentage of “good : e
. . . and Rosen 1992). The function must be optimized on
crossovers with the classical (resp adapted) operatooutith [—10000, 10000]™. Itis defined by :
sharing and with sharing. B ' ' y:
Figure 7 shows that the sharing process delays the conver- fo(z) =
gence to the optimum. Comparing figures 5 and 6 shows that N
the converging rate is penalized by the sharing process- HOWZ 0.15d;(0.05 S(2;) + z)? for |z; — z;| < 0.05
ever, itis difficult to say if the sharing process has an infage “ d; x? otherwise
on the efficiency of the crossover. =

Figure 8 shows that the adapted operator is all the more ef- o= 0.2[]2:/0.2] + 0.49999] S(z;)
ficient because population is diversified. Figure 6 shows tha 1 if 2 > 0 '
2The n point crossover takes into account the fact that the ordénef S(z) = 0 ifz=0
variables has no importance —1 ifz <0



min | max | mean o build a system able to solve automatically air traffic comflic
classical 76 | 294 | 179.44| 178.47 involving up to 30 planes with real traffic. The problem in-
adapted 42 | 204 | 92.33 | 91.81 volves up to 90 variables. The GA with adapted crossover
classical / sharing 79 | 357 | 248.87| 247.32 outperformed every other method tried (simulated anngalin
adapted / sharing 42 | 186 | 96.57 | 95.95 A*, B&B based on interval programming). It was able to
tackle the problem while classical GA were limited to prob-
Table1 Convergence for Griewank’s function lems involving less than 10 planes (30 variables) (Dureind

al. 1996, Durand 1996).

In this paper, we hadn't the place to discuss the influence of
parameter\. It can be used to control the determinism of the
This function has10" local optima and all points of adapt.eq crossover. Too small values can push the GA into lo-
[=0.05,0.05]" are global optima. Ingber presents this func-C&l minima, while too large ones slow down the convergence.
tion as an excellent test for all global optimization techugs, 't S€ems thatitshould decrease while the algorithm coegerg
and it is interesting to compare GA with adapted crossovefS: at the beg|_nn|ng, the space is explored_ r{:lndomly aneatth
with VFSR, which is currently the best simulated annealing€nd: the algorithm becomes more deterministic.
technique. It is easy to define a local fitness for adapte??
crossover as the function is completely separable. eferences
Corana, A., M. Marchesi, C. Martini and S. Ridella (1987).

Minimizing multimodal unctions of continuous vari-
ables with the “simulated annealing” algorithm. Pro-

As it could have been expected, the adapted crossover is of ge?:jmgs A(gn;he ACM Transaction and Mathematical
course very efficient: both classical GA and VFSR fail in find- oftware '

ing an optimum forN > 24; the GA with adapted crossover Corcoran, Arthur L. and Roger L. Wainright (1996). Reduc-
finds the optimum up t&v = 1000. ing disrupton of superior building blocks in genetic al-
4.2 Griewank’s function gorithms. In:Proceedings of the Symposium on Applied

. . o Computing, PhiladelphigACM.
This function is much more interesting than Corana’s, as it i puting P

dimoas = {1.0,1000.0,10.0,100.0}

Gi(as) = | O18di(0.055(z) +2)* | — x| < 0.05
W)= d; a2 otherwise

not completely separable. It is defined by: Durand, Nicolas (1996). Optimisation de Trajectoires pour
la Résolution de Conflits en Route.. PhD thesis. EN-
1 & - z; SEEIHT, Institut National Polytechnigue de Toulouse.
F(zy,..,2,) = —Zx?—]:[cos(l—_) y q
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