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ABSTRACT
Partial separation is a mathemati-

cal technique that has been used in op-
timization for the last 15 years. On
the other hand, genetic algorithms are
widely used as global optimizers. This
paper investigates how partial separa-
bility can be used in conjunction with
GA. In the first part of this paper,
a crossover operator designed to solve
partially separable global optimization
problems involving many variables is in-
troduced. Then, a theoretical analysis
is presented on a test case, along with
practical experiments on fixed size pop-
ulations, with different kinds of selection
methods.

Introduction
This paper deals with minimization problems for which the
function to minimize is the sum of many positive terms, each
term only involving a subset of variables. Griewank and Toint
gave first definition of such functions (i.e partially separable
functions) about 15 years ago (Griewank and Toint 1982).
Properties of partial separability are commonly used to solve
local optimization problems.

On the other hand, it is quite widely accepted that on real
problems, when a crossover operator that makes sense can
be defined, the efficiency of GA (compared to other stochas-
tic optimization methods) is closely related to the use of
the crossover operator: considering large size problems, the
use of random crossover operator can penalize GAs perfor-
mance. Classical crossover operators described in the lit-
erature (Goldberg 1989, Michalewicz 1992, Holland 1975)
create two children from two parents chosen in the popula-
tion. Initial operators on bit strings simply cut the two par-
ents strings in two parts. The main drawback of these opera-
tors is that short schemes have a greater probability to survive
than long ones. Consequently the encoding problem becomes
very important. Multi-points crossovers and Gray codes are

introduced to solve this problem. When using real variable
coding, programmers very often use arithmetic crossover.
However, none of these methods recognizes and favors good
schemes. Heuristics are sometimes used to favor “good”
crossovers and “good” mutations (Raviseet al.1995) or try to
reduce disruption of superior building blocks (Corcoran and
Wainright 1996).

We will show in this paper that taking advantage of the
structure of partially separable functions to define a new
crossover operator improves the converging speed and con-
verging rate of a genetic algorithm.

1 Partial separability
1.1 Definition
Partially separable problems considered in this paper havethe
followingcharacteristics: the function

�
to minimize depends

on � variables� � , � � , .., � � (� large) and is a sum of� pos-
itive functions

� �
involving only a subset of variables. Par-

tially separable functions can be written:� � � � 	 � � 	 
 
 	 � � � � 
�� � � � � � � � � 	 � � � 	 
 
 	 � � � � �
1.2 Adapted crossover principle
The crossover operator introduced in this article does not
require any particular coding. The chromosome is directly
coded with the variables of the problem (these variables may
be real, integer,...). The intuitive idea is the following:for
a completely separable problem, optimizing the global func-
tion can be done by optimizing each variable separately. This
strategy is adapted to partially separable functions. Whencre-
ating a child from two parents, the idea is to take for each
variable the one that locally fits better (more or less� , where� controls the determinism of the operator).

First, we define alocal fitness� � � � � 	 � � 	 
 
 	 � � � for vari-
able� � as follows:� � � � � 	 � � 	 
 
 	 � � � � �� � � � � � � � � � 	 � � � 	 
 
 	 � � � � �� �
where� � is the set of� such as� � is a a variable of

� �
and� �

the number of variables of
� �

.



Intuitively, the local fitness associated to a variable isolates
its contribution to the global fitness1. Furthermore, it has the
following good property:��� � � � � � � � 	 � � 	 
 
 	 � � � � � � � � 	 � � 	 
 
 	 � � �

When minimizing
�

, if:� � � � � �  � ! � � " � � � � � �  � ! � � # �
then child$ will contain variable� � of parent$ . Else, if:� � � � � �  � ! � � % � � � � � �  � ! � � & �
then child$ will contain variable� � of parent' . If:( � � � � � �  � ! � � # � � � � � �  � ! � � ( ) �
then variable� � of child $ will be randomly chosen, or can
be a random linear combination of the* + , variable of each
parent when dealing with real variables. If the same strategy
is applied to child$ and to child' , children may be identi-
cal, especially if� is small. This problem can be avoided by
taking a new pair of parents for each child.

Let’s consider the followingcompletely separable function:� � � � 	 � � 	 � - � � � � & � � & � -
for � � , � � and� - integers include in. / 	 ' 0 . Variable* ’s local
fitness is:� � � � � 	 � � 	 � - � � � � . Let’s cross parents

� $ 	 / 	 ' �
and

� ' 	 $ 	 / � which have the same fitness
� � 1 . With� � / , child $ will be

� $ 	 / 	 / � :
� � $ . With � � $ ,

child ' may be
� ' 	 $ 	 / � , � ' 	 / 	 / � , � $ 	 $ 	 / � , or

� $ 	 / 	 / � .
The children’s fitness are always better than the parents fitness
when� � / which is not the case with a classical crossover
operator.

As it is completely separable, this function is obviously too
simple to show the interest of the adapted crossover operator.
In the next paragraph, a simple partially separable function
is introduced and the improvement achieved is theoretically
measured.

2 Theoretical study
Let’s define the following function:� � � � 	 � � 	 
 
 	 � � � � �2 3 � 4� � 5 � 6 � � � 	 � � � (1)� � � 	 � � 	 
 
 	 � � � is a bit string and

6 � � � 	 � � � � $ if � � 7� � �
and / if � � � � � . It must be noticed that the function is only
partially separable and has' global minima,

� $ 	 $ 	 $ 	 
 
 	 $ � and� / 	 / 	 / 	 
 
 	 / � .
1There are often many different ways to define a local fitness that can

favour more or less competing optima. Discussing this subject in the present
paper would be too long.

For � � � � � 	 � � 	 
 
 � � � , we define the local fitness� � � � �
by: � � � � � � $' ��� � � 6 � � � 	 � � �
We define8 � � � as the number of bits equal to 1 in� . Then, it
is easy to establish that:� � � � � 8 � � � � � # 8 � � � �� � � � � � 8 � � �' � 9 � � � /� � # 8 � � �' � 9 � � � $

In the following paragraphs, we use a classical� point
crossover operator;: � and: � represent' parents randomly
chosen in a population and; represents their child.

In paragraph 2.1, the probability of fitness increase when
using the adapted or the classical crossover operator are com-
pared. Then, the adapted crossover converging rate is com-
puted in a simple genetic algorithm, with no selection and no
mutation (paragraph 2.2). In paragraph 2.3, a GA with selec-
tion is used to compare the two crossovers

2.1 Probability of fitness increase
For function (1), the probabilityof fitness increase when using
the classical or the adapted operator can be mathematically
computed for every possible couple of parents.

Let’s define< � = � � � 	 > 	 * � as the probability to find* bits
equal to$ at the same position in both parents: � and: � , with8 � : � � � � and 8 � : � � � > . As < � = � � � 	 > 	 * � � < � = � � > 	 � 	 * � ,
we will suppose that� ) > in the following. It can be shown
that:? if * % � , then: < � = � � � 	 > 	 * � � /? if * ) � , then:

< � = � � � 	 > 	 * � � ; �� � = �@A � 2 > # B� # B
� = �@A � � � � # B � # � > # * �� # B

The classical crossover used is the� point crossover that
randomly chooses bits from: � or : � (the order of the bit
string has no influence on the fitness).

For the adapted crossover (respectively for the classical
crossover), let’s define< C � � 	 > 	 * � (resp. < D � � 	 > 	 * � ) as the
probability that if 8 � : � � � � and 8 � : � � � > then 8 � ; � � * .
As < C � � 	 > 	 * � � < C � > 	 � 	 * � and < D � � 	 > 	 * � � < D � > 	 � 	 * � , we
will suppose that� ) > in the following. Then, it can be
shown that for the classical crossover:

< D � � 	 > 	 * � � E F G H � I � J � = � K�A � E L M H 2 I � N O N � P �� K < � = � � � 	 > 	 B � ; � = A� J � = � A' � J � = � A
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For the adapted crossover(with� � S W X � * 	 � # * � ):� & > " � Y < C � � 	 > 	 * � � < � = � � � 	 > 	 * �� & > % � Y < C � � 	 > 	 * � � < � = � � � # � 	 � # > 	 � # * �� & > � � Y < C � � 	 > 	 * � � 
�A � 2 < � = � � � 	 > 	 B � ; � = A� J � = � A' � J � = � A
As < � = � � � 	 > 	 * � � / if * % S W X � � 	 > � , then:? if � & > " � and* % S W X � � 	 > � , then< C � � 	 > 	 * � � /? if � & > % � and* " S T U � � 	 > � , then< C � � 	 > 	 * � � /

Consequently:? if � & > " � and< C � � 	 > 	 * � % / ,
then* " S W X � � 	 > 	 � # � 	 � # > �? if � & > % � and< C � � 	 > 	 * � % / ,
then* % S T U � � 	 > 	 � # � 	 � # > �

Thus, if � & > 7� � , then
� � ; � Z S T U . � � : � � 	 � � : � � 0 . If� & > � � , local fitness of variables of each parent are equal

and the adapted crossover behaves like a classical� points
crossover.

Figures 1 and 2 give the probability for a child to have a bet-
ter fitness than its parents (for all the possible combinations
of parents). On this example, the adapted crossover widely
improves crossover efficiency. The small square in the cen-
ter of figure 1 represents a probability of improvement larger
than/ 
 V . It becomes a very large square on figure 2.

2.2 Adapted crossover converging rate
As < C and < D are known, it is possible to evaluate the proba-
bility to find an optimal solution after� generations. The GA
only uses a crossover operator without any selection, or mu-
tation operator. Let’s define[ C � � 	 * � as the probability that8 � ; � � * if ; is a randomly chosen element at generation� . At generation/ :

[ C � / 	 * � � ; ��' �
At generation� & $ :

[ C � � & $ 	 * � � ��� � 2 ��� � 2 [ C � � 	 � � [ C � � 	 > � < C � � 	 > 	 * �
Figure 3 gives the evolution of[ C � � 	 / � � [ C � � 	 � � for

different values of� . It appears that the probability to find� / 	 / 	 / 
 
 	 / � or
� $ 	 $ 	 $ 
 
 	 $ � stabilizes around�- after genera-

tion \ . It was decided that when local fitness are equal, the
crossover used was the classical crossover. If it had been de-
cided that each time local fitness are equal, the same parent
would give its value to the child, then probabilities to find� / 	 / 	 / 
 
 	 / � or

� $ 	 $ 	 $ 
 
 	 $ � would have stabilized around�� . It
is important to note that� has little influence on the conver-
gence speed.

It is obviously useless to expect that the same GA using the
classical crossover converges. In fact, we have:] � ^ _ 	 [ D � � 	 * � � ; ��' �
2.3 Selection probability
As the fitness function takes its values in. / 	 � � ` a 0 , we will se-
lect chromosomes proportionally to� � ` a # � � : � . Let’s study
the simple GA that selects individuals according to the previ-
ous criteria and then uses the adapted or classical crossover.
Therefore, let’s define� C � � 	 * � and � D � � 	 * � as the proba-
bility that 8 � ; � � * if ; is a randomly chosen element at
generation� , just after the selection operator.

Then, it is easy to prove that:� C � � & $ 	 * � � b C � � & $ 	 * �c �� � 2 b C � � & $ 	 * �� D � � & $ 	 * � � b D � � & $ 	 * �c �� � 2 b D � � & $ 	 * �
with d � * � � � �a # * � � # * �
b C � � & $ 	 * � � ��� � 2 ��� � 2 d � * � � C � � 	 � � � C � � 	 > � < C � � 	 > 	 * �
b D � � & $ 	 * � � ��� � 2 ��� � 2 d � * � � D � � 	 � � � D � � 	 > � < D � � 	 > 	 * �
On figure 4, the four curves on the top represent� C � � 	 / �

for chromosomes of size' / , V / , $ / / and ' / / bits. The four
curves on the bottom represent� D � � 	 / � for chromosomes of
sizes' / , V / , $ / / and' / / .

The efficiency of the adapted crossover appears clearly,
particularly for large sized chromosomes. The converging
rate is not very dependent on the size of the chromosome with
the adapted crossover, whereas it is very dependent on the size
of the chromosome with the classical crossover.

3 Experimental tests
In the previous study, the size of the population was not lim-
ited. However, population size does have an influence on the
converging rate. Moreover, the previous example has only'
global optima and we did not measure the ability of the GA to
find every global optimum. We are going to tackle these two
issues in this section.

Let’s consider the same function as previously:� � � � 	 
 
 	 � � � � �� 5 � 4� � 5 � 6 � � � 	 � � � (2)

but with � �
integer in . / 	 a 0 .

This function hasV optima defined by
] � � 	 > � � � � � � . In

paragraph 3.1, classical and adapted crossover operators are
compared in a simple GA, similar to the theoretical model.
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The number of optima found and the converging speeds
are compared. In paragraph 3.2, a sharing operator is added
to find as many optima as possible. The efficiency of classical
and adapted crossover are also measured.

3.1 GA without sharing
Function (2) is optimized with a GA on' / / runs (generations:$ / / / , population size:V / / , proportion crossed:V / %, selec-
tion: stochastic reminder without replacement, elitism: yes,
sharing: no, mutation:no). The first$ / / tests are done with
a classical� point crossover2. The $ / / other tests are done
with the adapted crossover previously described.

Figure 5 gives the number of runs for which 1, 2, 3 or 4
optima are found when using the adapted crossover. It is im-
portant to note that the 5 optima are never found. The figure
also gives the number of runs for which 1 optimum is found
when using the classical crossover. The GA with classical
crossover never finds 2 optima.

3.2 GA with sharing
The GA is performed on the same function, but with a shar-
ing process. Therefore, a distance between two chromosomes
is defined. Let’s definee � ; � 	 ; � � as the Hamming distance
between chromosome$ and ' . If � is the size of the chromo-
some, then let’s define:f � b ! � ; � 	 ; � � � $ 	 if e � ; � 	 ; � � " �'/ 	 otherwise

and_ � ; � � the number of chromosomes; � in the population
for which

f � b ! � ; � 	 ; � � � / . The sharing process used in the
following divides the fitness of chromosome; �

by _ � ; � �
before applying the selection process.

Figure 6 gives the number of runs for which the 5 optima
are found when using the adapted crossover and sharing. The
figure also gives the number of runs for which 1 or 2 optima
are found when using the classical crossover and sharing. The
GA with classical crossover and sharing never finds more than
2 optima.

3.3 Influence of sharing
A “good” crossover can be defined as a crossover for which
the fitness of the child is better than the fitness of both parents.
In order to measure the influence of sharing on the crossover’s
efficiency, figures 7 (resp 8) give the percentage of “good”
crossovers with the classical (resp adapted) operator without
sharing and with sharing.

Figure 7 shows that the sharing process delays the conver-
gence to the optimum. Comparing figures 5 and 6 shows that
the converging rate is penalized by the sharing process. How-
ever, it is difficult to say if the sharing process has an influence
on the efficiency of the crossover.

Figure 8 shows that the adapted operator is all the more ef-
ficient because population is diversified. Figure 6 shows that

2The g point crossover takes into account the fact that the order ofthe
variables has no importance
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the 5 optima are always found before generation' / . Its seems
that the sharing process has little influence on the converging
rate.

4 Classical test functions
4.1 Corana’s function
This function is presented in (Coranaet al. 1987). We
use here the restriction used by Ingber in its article (Ingber
and Rosen 1992). The function must be optimized on. # $ / / / / 	 $ / / / / 0 h . It is defined by :9 2 � � � �h�� � � i / 
 $ V j � � / 
 / V � � k � � & k � � � for

( � � # k � ( " / 
 / Vj � � �� otherwise lk � � / 
 ' m ( � � ` / 
 ' ( & / 
 a n n n n o � � � � �� � k � � � pqr $ if
k � % // if
k � � /# $ if
k � " /



min max mean s
classical 76 294 179.44 178.47
adapted 42 204 92.33 91.81
classical / sharing 79 357 248.87 247.32
adapted / sharing 42 186 96.57 95.95

Table 1 Convergence for Griewank’s function

j � E t u v � w $ 
 / 	 $ / / / 
 / 	 $ / 
 / 	 $ / / 
 / x
This function has $ / y h local optima and all points of. # / 
 / V 	 / 
 / V 0 h are global optima. Ingber presents this func-
tion as an excellent test for all global optimization techniques,
and it is interesting to compare GA with adapted crossover
with VFSR, which is currently the best simulated annealing
technique. It is easy to define a local fitness for adapted
crossover as the function is completely separable.

� � � � � � � i / 
 $ V j � � / 
 / V � � k � � & k � � � 	 ( � � # k � ( " / 
 / Vj � � �� otherwise

As it could have been expected, the adapted crossover is of
course very efficient: both classical GA and VFSR fail in find-
ing an optimum for_ % ' a ; the GA with adapted crossover
finds the optimum up to_ � $ / / / .

4.2 Griewank’s function
This function is much more interesting than Corana’s, as it is
not completely separable. It is defined by:� � � � 	 
 
 	 � � � � $a / / / ��� � � � �� # �@� � � z { | � � �} � �
We will use here� � $ / . This function has only one global
minimum, for � � � / 	 
 
 
 	 / � . We define the local fitness by:

� � � � � 	 
 
 	 � � 2 � � $a / / / � �� # � 2@� � � z { | � � �} � �
4 series of 100 tests were conducted: (classical crossover,

no sharing), (classical crossover, sharing), (adapted crossover,
no sharing), (adapted crossover, sharing). We say that the
GA has found the optimal solution when a local optimization
function applied to the best element finds the optimum. Re-
sults are presented on table 1. They give the min, max, mean
and standard deviation number of generations to find the op-
timum. The adapted crossover is clearly much more efficient
than the classical one.

5 Conclusion
The crossover operator introduced in this paper can be
adapted to various global optimization problems, and spe-
cially difficult problems with many variables. The method
was in fact developed during a work conducted jointly with
the French Civil Aviation Administration. The goal was to

build a system able to solve automatically air traffic conflict
involving up to 30 planes with real traffic. The problem in-
volves up to 90 variables. The GA with adapted crossover
outperformed every other method tried (simulated annealing,: ~ , B&B based on interval programming). It was able to
tackle the problem while classical GA were limited to prob-
lems involving less than 10 planes (30 variables) (Durandet
al. 1996, Durand 1996).

In this paper, we hadn’t the place to discuss the influence of
parameter� . It can be used to control the determinism of the
adapted crossover. Too small values can push the GA into lo-
cal minima, while too large ones slow down the convergence.
It seems that it should decrease while the algorithm converges
as, at the beginning, the space is explored randomly and at the
end, the algorithm becomes more deterministic.
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