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Abstract

The Auwr Traffic Control system of a country man-
ages all the aircraft that fly in its airspace, designs
control sectors, manages the flows between the differ-
ent airports and beacons, ensures separation between
atrcraft during thewr flight, take off and landing. Thus,
it operates at different levels, each one of them de-
signed to provide control, ensure safety, and limit the
traffic passed to the following level. In this paper we
show how Genetic Algorithms can improve some of the
tasks manually done by the ATC system. After a brief
description of GAs, some of the improvements used
(simulated annealing, sharing), we study three appli-
cations of GAs to ATC. We first show an application
of GAs to en-route conflict resolution. Then we give
an example on GAs used to optimize air space sec-
toring. The last part gives an application of GAs to
traffic assignment.

1 Introduction

The Air Traffic Control (ATC) system of a country
operates at five different levels :

1. Airspace design (airways, control sectors, ...).
When joining two airports, an aircraft must follow
routes and beacons; these beacons are necessary
for pilots to know their position during naviga-
tion and help controllers to visualise the traffic.
As there are many aircraft simultaneously present
in the sky, a single controller is not able to man-
age all of them. So, airspace is partitioned into
different sectors, each of them being assigned to
a controller. This task aims at designing the air
network and the associated sectoring.
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2. Air Traffic Flow Management (ATFM) (strategic
planning, a few hours ahead). With the increas-
ing traffic, many pilots choose the same routes,
generating many conflicts on the beacons induc-
ing overloaded sectors. Traffic assignment aims
at changing aircraft routes to reduce sector con-
gestions, conflicts and coordinations.

3. Coordination planning (a few ten minutes ahead).
This task guarantees that new aircraft entering
sectors do not overload the sector.

4. Classical control in ATC centers (up to 20 mn
ahead). At this level, controllers solve conflicts
between aircraft.

5. Collision avoidance systems (a few minutes
ahead). This level is activated only when the pre-
vious one has failed.

Each level has to limit and organize the traffic it
passes to the next level, so that this one will never be
overloaded.

However, the ATC systems in Europe and in the
US have now reached their limits, although the rea-
sons are different in these two regions. Therefore, one
can reasonably expect that optimizing the system will
provide substantial benefits in terms of safety, capac-
ity, and induced costs. In this paper we show how
Genetic Algorithms can bring new solutions to im-
prove some of the tasks previously described. The first
part shortly describes general principles of GA and
introduces some improvements that we found useful.
In the second part, we will give a description of the
three problems we solve, the coding we choose and
the results obtained. This project i1s performed by
the Centre d’Etudes de la Navigation Aerienne (in-
stitute in charge of studies and research for improv-
ing the french ATC systems) and the Ecole Nationale
de I’Aviation Civile. The Ecole Nationale Superieure
d’Electronique, d’Electrotechnique, d’Informatique et
d’Hydraulique de Toulouse and the Centre de Mathe-
matiques Appliquees de I’Ecole Polytechnique collab-
orated to this project.
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Figure 1: GA principle

2 Genetic Algorithms
2.1 Principles

We are using classical Genetic Algorithms and Evo-
lutionary Computation principles such as described in
the literature [Gol89, Mic92]; Figure 1 describe the
main steps of GAs.

First a population of points in the state space is
randomly generated. Then, we compute for each pop-
ulation element the value of the function to optimise,
which is called fitness. In a second step we select! the
best individuals in the population according to their
fitness. Afterwards, we randomly apply classical oper-
ators of crossover and mutation to diversify the pop-
ulation (they are applied with respective probabilities
P, and P,,). At this step a new population has been
created and we apply the process again in an iterative
way.

2.2 Improvements

2.2.1 Simulated Annealing Tournament

GA can be improved by including a Simulated An-
nealing process after applying the operators [MG92].
For example, after applying the crossover operator, we

!Selection aims at reproducing better individuals according
to their fitness. We tried two kinds of selection process, Roulette
Wheel Selection” and ” Stochastic Remainder Without Replace-
ment Selection”, the last one always works out better.
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Figure 2: GA and SA mixed up

have four individuals (two parents P1,P2 and two chil-
dren C'1,C2) with their respective fitness. Afterward,
those four individuals compete in a tournament. The
two winners are then inserted in the next generation.
The selection process of the winners is the following :
if C'1 is better than P1 then C'1 is selected. Else C'1
will be selected according to a probability which de-
creases with the generation number. At the beginning
of the simulation, C'1 has a probability of 0.5 to be
selected even if its fitness is worse than the fitness of
P1 and this probability decreases to 0.01 at the end of
the process. A description of this algorithm is given
on figure 2.

Tournament selection brings some convergence the-
orems from the Simulated Annealing theory. On the
other hand, as for Simulated Annealing, the (stochas-
tic) convergence is ensured only when the fitness prob-
ability distribution law is stationary in each state

point [AKS&9].

2.2.2 Sharing

Most of our problem are very combinatorial and may
have many different optimal solutions. In order to
find most of these solutions and to avoid local op-
tima, sharing process [YG93] was introduced. Thus,
in each problem, we had to define a distance between
two chromosomes. This sharing process has the great
advantage to grow in nlog(n) if n is the size of the
population. Results show that sharing was very use-
ful for combinatorial problems.

Simulated annealing and sharing process have re-
ally improved convergence of GAs and were definitely
adopted for the three following applications.



3 Conflict resolution problem

3.1 Description and Complexity of our
problems

Inside a sector, we want to give aircraft con-
flict free trajectories as close as possible to
optimal trajectories. An aircraft is said to be
conflict free when it 1s distant from the other
aircraft of a separation norm d at each point
of its trajectory.?.

This conflict resolution problem must respect the
following constraints :

1. trajectories must respect both aircraft and pilot
performances. Considering the evolution of ATC
toward automation, trajectories must remain sim-
ple for controllers to describe as well as for pilots
to understand and follow. Conflicts will be solved,
if possible without changing the aircraft flight lev-
els for comfort and economical reasons.

2. conflict free trajectories must be as close as pos-
sible to optimal trajectories. They must remain
simple enough to allow conflicts involving many
aircraft to be computed in a real time situation.
Our main goal is to find out the global optimum
and not only a suitable solution.

Optimal Command Theory with State Constraints
developed by Bryson and Ho [BHT75], supplementary
conditions exposed by Kreindler [Kre82], Bryson, Den-
ham and Dreyfus [BDD63] leads to the following con-
clusions : at the optimum, as long as the norm separa-
tion constraint is not saturated, aircraft fly in straight
line. When saturating the constraint, aircraft start
turning, and as soon as the separation constraint is
freed aircraft fly straight again. This leads us to adopt
a turning point modelling : a mathematical study of
our problem [Dur96] shows that conflict free trajecto-
ries can be approximated by turning point trajectories
(figure 3).

For a conflict involving two aircraft, when only
one aircraft turns, the turning point approximation
lengthens the optimal trajectory for less than 1% if
distance between the aircraft and the conflict point is
greater than two separation norms and the angle of
incidence between trajectories is greater than 30 de-
grees. We can also prove that the offset modelling
(see figure 4), which moves an aircraft to put it on a
parallel route, is worse. It has the only advantage to

2We define two different separation norms in the vertical
dimension (2000 feet) and in the horizontal plan (8 nautic miles)
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linearize the separation constraints. The offset is thus
very easy to calculate, but separation constraints must
be checked during manceuvers and the complexity of
the problem remains. Moreover, the offset modelling
requires one more manceuver for the pilot. With the
turning point modelling, the whole information of a
trajectory can thus be described by the coordinates
of the turning point. This modelling reduces to R2
the space solution set, which was a set of functions
defined over a time interval. The third dimension ex-
tension comes from the aircraft piloting constraints.
When changing an aircraft level, we can not choose its
climbing rate or descending rate for technical reasons.
We can olny choose the beginning of vertical evolu-
tion, the level reached and the length of the vertical
offset. For practical reasons, we may not change the
flight level of an aircraft already turned off or turn off
an aircraft changing its level. The performance model
used by the french ATC gives us the flying parameters
for many different types of aircraft.

If we can easily prove that the minimised function
is convex, the set of conflict free trajectories is not.
It is not even connected. For a conflict involving two
aircraft, the set of conflict free trajectories has two
connected components. For a conflict involving n air-
craft there may be 2" connected components in the
free trajectory space which proves that an algorithm
solving 2" optimum searches is clearly exponential. Tt



is important to note that this complexity is indepen-
dent of the modelling chosen. The offset modelling
seems to be very attractive, because it linearizes con-
straints. Nevertheless, each constraint multiplies by
two the number of linear programs to solve. Our prob-
lem involves ﬂnz—_ll constraints. Moreover, linearizing
the minimised function, multiplies by 27 the number
of linear program to solve (we minimise the sum of
each aircraft offset which may be positive or nega-
tive). Finally, we will have to solve 25 finear pro-
grams, each one involving % linear constraints.
For n = 5, we have 32768 linear programs to solve
and 15 constraints in each program (this problem is
studied in [DMA94] and [Med94]).

Using classical methods, such as gradient methods
for example, 1s useless for our problem, because of the
arbitrary choice of the starting point required by these
methods. Each connected component may contain one
or several local optima, and we can easily understand
that the choice of the starting point in one of these
components cannot lead by a classical method to an
optimum in another component. We can thus expect
only a local optimum. Practical attempts done on
LANCELOT (Large And Nonlinear Constrained Fi-
tended Lagrangian Optimisation Techniques) [CGT92]
have confirmed this problem and high-lighted others.
Convergence is very slow, particularly when we take
the speed constraint into account. Solving a five air-
craft conflict without vertical offset takes a week on
a Sun workstation. This approach was abandoned.
The combinatory induced by the offset modelling is
so important that we cannot expect to find the global
optimum efficiently. Moreover, the separation during
manceuvers must be checked afterwards. For these
reasons, classical methods were abandoned for GAs,
particularly efficient to solve combinatorial problems

3.2 Coding

Our coding contains both floating and discrete
value. An example of chromosome is given in figure 5.
The parameters are initialised as follows :

e Vertical Evolution
This parameter can be GOES_DOWN, STAYS or
GOES_UP. The value is set at random.

¢ Heading and Time (for an aircraft whose vertical
evolution is STAYS)
We have the initial heading of the aircraft, we
set a new one using a random number generator.
We add to the initial value the maximum turning
angle multiplied by a random number. The time
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Figure 5: Structure of the chromosome

parameter defines the time the aircraft will fly
following the previously specified heading.Then
the aircraft will turn and head to its Destination
point.

o Verticaltime and Leveltime(for an aircraft which
goes up or down)
The Verticaltime parameter represents the dura-
tion of the Vertical Evolution, if there is one. The
Leveltime parameter represents the duration the
aircraft will fly at the same level, after its ver-
tical evolution. Then the aircraft may have to
change once again its flight level, for instance if it
has been climbing too much it may need to climb
down for a while.

e Consumption of fuel
This value is updated during the flight.

An aircraft which does not remain at the same level
during its flight is not changing its heading, this is easy
to understand for practical reasons. A pilot will not
accept changing its altitude and also its heading, for
the comfort of the passengers.

A problem is given by a set of aircraft entering an
airspace in which conflicts are going to occur. We have
for each aircraft :

1. Its type : for instance a Boeing 747 (we are using
a realistic model to make our aircraft fly : this
model is based on the characteristics of the air-
craft.

2. Its position (latitude and longitude, in degrees,
altitude in feet).

3. Its heading, in degrees.

Nyt
consumption of fuel



4, Tts destination point altitude.?
Other global data given :

1. The duration of our study and time step used
during the simulation.

2. The horizontal separation and the vertical sepa-
ration, in Nm.

3. The percentage error about aircraft speed (most
aircraft can not maintain a constant speed).

4. The maximum turning angle, in degrees.

The main issue was to know how we were going to
compute the fitness of a chromosome. We have a poly
criteria problem to solve, in fact the following criteria
have to be matched together to give us a single fitness
function :

e A difference of flight level at the end of the simu-
lation (for instance an aircraft was bound to reach

flight level 300 and it only reached level 290).
e The delay induced by a change of heading.

e The consumption of fuel induced by a modifica-
tion of the flight level.

The difference of flight level at the end of the simula-
tion has been heavily penalised so that each aircraft
reaches its flight level destination. The solutions cre-
ating conflicts have not been eliminated, but they are
heavily penalised, because if we want the GA to work
we have to let it reproduce, cross and mutate chromo-
somes. Chromosomes creating conflicts are often near
a suitable solution so they have to survive, for a while,
among the population. The problem which occurred
when introducing the third dimension was to evaluate
the cost of a vertical evolution. The algorithm must
try to keep the aircraft as much as possible at the same
level because of the problems caused by a flight level
modification (consumption of fuel, discomfort for the
passengers, difficulty to know, with accuracy, how the
aircraft climbs).

The crossover operator used randomly picks up one
part of each parents chromosome, whereas the muta-
tion operator randomly changes one of the parameters
of an aircraft of a chromosome.

3.3 Results

To validate this algorithm, we experimented it on
conflicts involving five aircraft. This conflict is very
hard to solve and would probably never really occur.

3We only need to know the altitude of the destination point
because the other coordinates are computed by our model using
the heading of the aircraft and its characteristics.
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Figure 6: Efficiency of a flight level modification .

Figure 6 gives a 3-dimensional representation show-
ing how an aircraft avoids the conflict by going down
10 levels®.

We can also see on figure 7 that the 4 aircraft
conflict remaining is very well solved in the horizon-
tal plane, each aircraft almost reaches its destination
point. This is a good example of the interest of having
an aircraft changing level in order to solve the conflict
more easily. Moreover the flight level modification is
done with efficiency, we can see that the aircraft avoids
the conflict as closely as possible. It only modifies its
altitude to avoid a conflict.

The parameters for the simulation were :
Population size : 200
Number of generations : 100
Probability of crossover : 0.6
Probability of mutation : 0.1

Figures 8 and 9 give the results of the algorithm.

At the end of the GA, we used a gradient method
in order to locally improve the best Chromosome.

This study shows that GA are very efficient for our
problem. It has the great advantage not to use heuris-
tics for solving conflicts, to reach a global optimum
and not only an available solution. More details can

be found in [AGS93, DAASY4].

410 levels represent 1000 Feet, which was precisely the ver-
tical separation used for the simulation.
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4 Air space sectoring

4.1 Description and Complexity of the
problems

we consider an air traffic transportation net-
work in a 2 dimensional space with flows on
it inducing a workload distributed over the
space. This workload must be partitioned into
K equilibrated convex sectors in a way that

minimises coordinations®.

This sectoring must take some constraints into ac-
count coming from the Air Traffic Control system :

- a pilot must not encounter the same controller
twice during his flight to prevent superfluous coordi-
nations ; this means that an aircraft crossing a sector
will encounter 2 and only 2 sector boundaries. To
guarantee that sectors meet this constraint we force
them to be convex in the topological sense®. This
constraint gives sectors a polygonal shape.

- a sector frontier has to be at least at a given
distance from each network node (safety constraint).
When a controller has to solve a conflict, he needs a
minimum amount of time to develop a solution. Since
each controller manages individually his sector, if a
sector frontier is too close to a crossing point, he is not
able to solve any conflicts because he has not enough
time between the coordination step (with the previous
sector where the aircraft comes from) and the time the
aircraft reaches the crossing point. The minimum de-
lay is fixed at 7 minutes and can be converted into a
distance once the aircraft speed is known.

- an aircraft has to stay at least a few minutes in
each sector it passes through to give the controller
enough time to manage the flight in optimum condi-
tions (min stay time constraint). We express this con-
straint by a minimum distance between two frontiers
cutting the same network link.

The last two constraints will be implemented the
same way by forcing a minimum length for any link
segment between two consecutive frontiers or between
a node and a frontier.

We have to build convex sectors (with a polygonal
shape induced by the convexity property). To reach

this goal we use a Forgy aggregation method [Sap90]

5When an aircraft crosses a sector frontier, controllers in
charge of those sectors have to exchange information about the
flight inducing a workload called coordination workload

8this kind of convexity is stronger than the one imposed by
our problem (our sectors have to be convex according to the
direction of the links of the network and not in all directions)
but is easier to implement
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Figure 10: Example of a 5-partitioning

coming from dynamic clustering in exploratory statis-
tics which aims at extracting clusters from a set of
points randomly distributed in a topological space
(see [CDG*89, Sap90]). This method randomly
throws K points (the class centers) in the space do-
main containing the transportation network and ag-
gregates all the domain points to their nearest class
center. This method ends up in a K partitioning of
our domain into convex sectors with linear frontiers.
Figure 10 gives an example of a 5-partitioning of a
rectangle.

The problem we have to solve can be divided
into two separate parts corresponding to two differ-
ent goals:

1. equilibrium of the different sectors workload ac-
cording to the number of aircraft and conflicts in
each sector;

2. minimisation of the coordination workload.

The second criterion is typically a discrete graph
partitioning problem with topological constraints and
then is NP_HARD [Che92]. Having chosen a contin-
uous flow representation, the first criterion induces a
discrete-continuous problem which is also NP_HARD.
So, according to the size of our network (about 1000
nodes), classical combinatorial optimisation is not rel-
evant and stochastic optimisation seems to be more
suitable.

Moreover this kind of problem may have several
optimal solutions (or near optimal) due to the different
possible symmetries in the topological space etc..., and
we must be able to find all of them because they have
to be refined by experts and we do not know at this
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Figure 11: Floating point chromosome

step which one is really the best. This last point makes
us reject classical simulated reannealing optimisation
which updates only one state variable, even if 1t might
give better results in some cases [IR92].

On the other hand, Genetic Algorithms (GAs)
maintain and improve a population of numerous state
variables according to their fitness and will be able to
find several optimal (or near optimal) solutions. Then,
GAs seem to be relevant to solve our sectoring prob-
lem.

4.2 Coding

A chromosome must contain all the sectoring infor-
mation for the GA to be able to evaluate the fitness
for each individual. This information is represented by
a set of points in our geographical space called class
centers (it can be shown that for each class center set
there is just one sectoring induced see [Sap90])). Our
chromosome will be composed of a string of floats con-
taining the concatenation of the different class center
positions (see figure 11).

This structure involves some new kind of operators
we now describe.

Crossover After selecting two parents in the current
population, we randomly chose an allele position (so
we select two sectors at the same allele position, one in
each sectoring). Afterwards, we join by a straight line
the associated class centers. Then, we move the class
centers on this line according to a uniform random
variable. An example of this kind of crossover is given
in figure 12 (allele 1 has been selected in this example).

Mutation When we mutate a chromosome we ran-
domly select an allele position and we move its associ-
ated class center by adding noise to it? (see figure 13
(in this example allele 2 has been selected for muta-
tion)).

4.3 Results

The results of the algorithm are very encouraging
as shown by the following experiments results.

7it seems that best results are given with an affine distribu-
tion and not with a Gaussian
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To evaluate this algorithm, we have used an artifi-
cial test network (see figure 14 )

As we can see this network has trivial solutions with
9 sectors. These solutions seem to be very evident
for a human being because of the brain perception
ability to investigate the different symmetries but for
a computer these problems have no characteristic and
remain difficult.

The different parameters we have chosen for our ex-
periments are the following :
Population size : 400
Number of generations : 200
Probability of crossover : 0.6
Probability of mutation : (.06

To see the convergence of our algorithm we ob-
served the evolution of the population statistics (max
and average) over the generations. It finds an exact

solution very quickly (generation 8, see figure 15).
This study was discussed with more details and re-



sults in [DASF94al.

5 Traffic assignment problem

5.1 Description and Complexity of our
problems

we constder an air traffic transportation net-
work in a 2 dimensional space sectorised into
K sectors for which we want to assign traf-
fic between Origin-Destination pairs in a way
that minimises extra route distance and re-
duces sector workloads.

This traffic assignment must take the following con-
straint into account :

1. the flow between each OD pair must not be par-
titioned.

This constraint is mandatory, as we want to be sure
that planes of different airlines on the same Origin-
Destination will follow the same route: this is the eg-
uity constraint.

Because of the sectoring, the cost on one link de-
pends directly on the flow on this link but is also in
relationship with the flows of all the links in the same
sector. This last point makes traffic assignment depen-
dent on the order : as soon as a path is assigned for an
OD pair, all previous assignments must be reconsid-
ered as the new assignment changes the cost function
by changing the link costs for all links in its sector.

So the problem induces a high combinatorial com-
plexity for which we must try to find a solution in
a discrete space with n! points where n is the num-
ber of Origin-Destination pair, a problem known to
be NP_HARD.

According to the number of Origin-Destination pair
we have to handle (several hundred), classical com-
binatorial optimisation is not relevant and stochastic
optimisation seems to be more suitable. As our goal
is not to build the ultimate traffic assignment system,
but a tool to help human experts assigning flows, we
are definitely interested in all optimal or nearly op-
timal solutions the algorithm might find. The many
constraints and the lack of efficient classical methods
solving this problem led us to use GAs.

5.2 Coding

To code our problem, we did not use binary chro-
mosomes. The problem is not well suited for binary
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Figure 16: Structure of the chromosome

coding, and, as it has been advocated already by dif-
ferent experts, a specific coding with specific operators
is usually more efficient.

An example of the coding of a chromosome is given
in figure 16. The chromosome is a list of cells ; each
cell is the coding of the path for an OD flow. On the
example, we see that all planes going from airport 1
to airport 16 will follow the path : airport 1, beacons
4,3,7,12 and airport 16. Planes from 16 to 1 will fol-
low the path 16,11,6,3,4,1 and etc. So, all information
necessary is encoded in each chromosome. It enables
us to compute for each chromosome the traffic assign-
ment cost giving the GA fitness.

One difficult point is the initialization of the pop-
ulation : to create one chromosome, we take into ac-
count distance costs only and we increase them by
a random extra cost. Then, we apply a Dijkstra al-
gorithm to find min cost paths for all the Origin-
Destination pairs. This generates a list of OD paths
which is our chromosome. We repeat those operations
till the population size is reached. According to the
deviation of the blank noise added as a cost, paths
more or less different from the optimal ones are gen-
erated (optimal in the sense of the distance criterium
only of course). This initialization method avoids the
creation of purely random paths and ensures, for in-
stance, that an aircraft coming from Madrid and going
to London will not be routed via Moscow.

We had then to create operators for crossover and
mutation. The efficiency of the algorithm depends of
the ability of those operators to create new individuals
that respect the constraints of our problem and that
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generate paths not too far from the optimal ones.

The crossover is implemented as a slicing crossover :
after selecting two parents in the current population,
we randomly chose an allele position creating twice
two paths subsets. Then, we just exchange the two
last subsets to create two children. An example of
crossover is given on figure 17.

To mutate a chromosome, we randomly select an al-
lele position and generate a new path for the Origin-
Destination pair selected by the same process as for
generating the initial population. An example, of mu-
tation is given on figure 18.

5.3 Results

To validate the algorithm, we used a toy network
for which we knew a trivial traffic assignment solution
(this network is drawn on figure 19). All the nodes on
the first diagonal (upper-left to lower-right) are air-
ports, all nodes on the other diagonal are beacons.

All airports in the upper left corner generate a traf-
fic flow which must be routed to the symmetric airport
(relative to the center of the web) in the lower right
corner. Respectively, each airport in this corner gen-
erates a flow that must be routed to the symmetric
airport in the upper left corner. Face to face flows on
the same link are forbidden and link capacity is very
limited, in order to prevent two flows to be routed on
the same link.

The parameters for the simulation were :
Population size : 400
Number of generations : 300
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Figure 18: Mutation operator
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Probability of crossover : 0.6
Probability of mutation : 0.1

The evolution of best-ever chromosome fitness and
average chromosome fitness is displayed in figure 20 :
an optimal solution is found at generation 180.

The solution is displayed in figure 21. It is clearly a
correct solution (there were many other solutions with
the same fitness : the direction of planes on each link
can be either clockwise or counter clockwise). As for
the previous part, it must be noted that, even if this
solution is trivial to find for a human being because
of the symmetries of the problem, it remains as dif-
ficult as any other problem for our algorithm. The
algorithm was then tested on more realistic networks
(too large to be presented here) and gave also good re-
sults [DASF94b] ; moreover, we were not able to find
a better traffic affectation by hand, which is a good
presumption of a correct behaviour of the algorithm.

6 Conclusion

This study shows how Genetic Algorithm are suit-
able to solve some ATC problems with very special
constraints. To reach this aim we had to extend the
classical binary concept to floating strings. This mod-
ification really improved the algorithm performances
regarding the resolution speed and the and the accu-
racy of the result. Subsequently we added a tourne-
ment operator and used dynamic parameters to im-
prove the space exploration as well as the selection

process. We also used a fast sharing process which
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Figure 21: Traffic assignment result

enabled us to find several different solutions of our
problems. The two fisrt problems being dependent
(Traffic assignment and Sectoring interact with each
other), the next step of this study is to mix the two
first problems in a single multi-objective genetic algo-
rithm. For the conflict resolution problem our next
purpose is to foresee real conflicts happening during a
traffic day, and to solve them in a real time to make the
aircraft avoid each other when the conflict happens.
A project of automating and optimizing the ATC sys-
tem will follow this initial study. Through this paper,
GAs showed that they were completly adapted to this
project.
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