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Abstract

This paper addresses the classical graph parti-
tioning problem applied to the air network :

One considers an air transportation
network with aircraft inducing a con-
trol workload. This network has to
be partitioned into K balanced sec-
tors for which the cutting flow is min-
imized.

1 Introduction

Aircraft have to follow routes in the sky in
a way to increase the navigation accuracy, a
route being described by a list of beacons the
plane have to follow to reach his destination.
Because there is a small number of beacons on
the ground, they often symbolize crossings of
airways and generate risks of collision between
aircraft. Therefore, pilots must be helped by
an air traffic controller who has a global view of
the current traffic distribution in the airspace
and can give orders to the pilots to avoid col-
lisions. As there are many aircraft simultane-
ously present in the sky, a single controller is
not able to manage all this traffic, and airspace
is then partitioned into several sectors, each of
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them being assigned to a controller. Nowa-
days, this sectoring is done by some airspace
experts (in an empirical way) who apply rules
they have learned from experience. This way
of working is relevant because it takes into ac-
count several practical aspects but is limited
to the local zone it treats. This process can be
improved by an automatic approach in order
to give an “optimal” sectoring for the whole
airspace which could be refined by experts.

Before specifying what is a good sectoring,
control workload on a sector has to be defined.
According to the controllers themselve, work-
load can be divided into three parts which cor-
respond respectively to the conflict workload,
the coordination workload and the trajectories
monitoring workload of the aircraft present in
the sector :

e the conflict workload gathers the different
actions of the controller to solve conflicts ;

e the coordination workload is the informa-
tion exchanges between a controller and
the controllers in charge of the border-
ing sector or between a controller and the
pilots when an aircraft crosses a sector
boundary.

e the monitoring aims at checking the dif-
ferent trajectories of the aircraft present
in the sector.

Then a good sectoring must have balanced
sectors according to the control workload and
must reduce the global coordination workload
which depends of the traffic low cut by the



sector boundaries. Furthermore any sectoring
must take some constraints into account com-
ing from the Air Traffic Control system :

e 3 pilot must not encounter the same con-
troller during his flight to prevent super-
fluous coordinations; this means that an
aircraft crossing a sector will encounter
two and only two sector boundaries. Then
that synthesized sectors have to be convex
according to the routes (route convexity
constraints);

e a sector boundary has to be at least at
a given distance from each route cross-
ing (safety constraint). When a controller
has to solve a conflict, he needs a mini-
mum amount of time to develop a solu-
tion. Each controller managing individ-
ually his sector, if a sector boundary is
too close to a crossing point, he is not
able to solve any conflicts because he has
not enough time between the coordination
step (with the previous sector where the
aircraft comes from) and the time the air-
craft reaches the crossing point. The min-
imum delay is fixed at seven minutes and
can be converted into a distance once the
aircraft speed is known.

e an aircraft has to stay at least a given
amount of time (a few minutes) in each
sector it crosses to give enough time to the
controller to manage the flight in his sec-
tor (min stay time constraint). This con-
straint can be expressed by a minimum
distance between two boundaries cutting
the same route link.

Then the problem we have to solve can be
summarized by the following :

one consider an air transportation
network with flows on it inducing a
workload spread over the airspace.
This workload has to be partitioned
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Figure 1: Voronoi diagram in a two dimen-
sional space

into K balanced sector in order to
minimize coordination and which sat-
isfies the route convexity constraint,
the safety constraint and the min stay
time constraint.

A first try has been developed in [1] where
the three dimensional airspace was partitioned
into polyhedral sectors. This approach was
based on Genetic Algorithm for which the
chromosome was describe by K points in the
airspace (class centers). The positions of these
K class centers were randomly distributed in
the airspace for which all the domain points
were aggregated to their nearest class center.
Then, each chromosome, synthesized a ran-
dom three dimensional Voronoi diagram (see
figure 1)

Good results have been given by this tech-
nique but it remains some weak points from
the operational point of view :

e polyhedral sectors (convex sector in a 3 di-
mensional space) are not adapted for the
air traffic because aircraft do not stay on
a stable three dimensional network (differ-
ent climb rates) ;



e operational sectors must have vertical pla-
nar boundaries to help controllers for co-
ordination of aircraft in climb or in de-
scent ;

e Voronoi diagrams are well adapted for sec-
tors design in 2 or 3 dimensions with space
convexity which is stronger than route
convexity inducing a strong restriction of
the state space.

A new approach is now presented which try
to circumvent the previous drawbacks. Instead
of sectorizing the physical airspace this new
technique partitions an underlying network
connecting the domain points where workload
has been registered.

2 Problem Modeling

Before creating sectors, the original network
has to be built by applying the following steps :

e A loaded day of traffic is chosen.

e All the crossings between all the trajecto-
ries are registered

e The associated workload is computed for
this network.

e An initial network is created where all the
nodes represent a crossing (this network is
supposed to be connected, this mean that
each nodes of the network can be reached
from all the other nodes by an undirected
path).

o All the links greater than 14 minutes are
removed and stocked in a new set of link.

o The remaining connected components
(and their associated workloads) are gath-
ered into a new single node (a connected
component is a connected subgraph).

e A new contracted network is created from
the two new sets of nodes and links.

This new network will be partitioned into
sectors.

The classical graph partitioning problem is
usually defined the following way :

Let G = (V,E,w) be an undi-
rected connected graph, where V =
V1, V2, ..., Un is the set of nodes, E €
V x V is the set of edges and w :
E — N defines the weight of the
edges. The Graph Partitioning Prob-
lem is to divide the graph into K
connected components P;...P;, such
that the sum of the weights of edges
between the component is minimal,
and the weight of the components are
nearly equal.

The problem we have to solve is more com-
plex because when an edge joining two compo-
nents is cut, a new weight appears on it which
is shared by the two associated components.
This new weight depends on the cutting flow
on the edge and is summarized by the coordi-
nation.

This means that the global weights of the
network before and after partitioning are not
the same (the later being heavier). So, the bal-
ance for the a priori partitioning (before cut-
ting the edges) is not the same as the balance
for the a posteriori partitioning (after cutting
the edge).

Constraint satisfaction

e Route convexity constraint Each sector
being synthesized by a connected compo-
nent of a network build from the routes
actually used (supposed to be the min dis-
tance route in the network) this constraint
is naturally satisfied.

e Safety constraint and min stay time constraint

Those constraints are partially satisfied



by construction of the network where all
the small links have been removed. For
the longer links (link in the new network),
the possible cuts are forced to be in a
central zone of the edges, 7 minutes flight
distant from both extremities.

Discrete graph partitioning is a classical
NP_HARD problem [2] and then no polyno-
mial algorithm has been identified to solve
it. So, the K graph partitioning is usu-
ally investigated by iteratively applying a bi-
partitioning heuristic on the successive cre-
ated subcomponents[3, 4], which is defini-
tively a suboptimal approach. Even, for
the bi-partitioning problem, the most pow-
erful heuristic developed by Goemans and
Williamson [5] ensure to be at least at 80 per-
cents from the optimum.

So, according to the size of our network
(about 1000 nodes), classical combinatorial op-
timization is not relevant and stochastic opti-
mization seems to be more suitable.

3 Evolutionary Algorithm

3.1 Introduction

Evolutionary algorithms (EAs) are heuristic
computer search techniques whose mechanics
are based upon the principles of natural selec-
tion found in the biological world [6, 7, 8, 9, 10,
11]. They have be used to obtain solutions to a
diverse set of known NP-hard problems includ-
ing task scheduling, graph-theoretical prob-
lems, VLSI layout, automatic control, numer-
ical integration, etc ... Empirical evidence
strongly suggests that EAs can outperform
other optimization techniques such as simu-
lated annealing [12].

Before an EA can be run, a suitable cod-
ing for the problem must be devised. A fitness
function is also required, which assigns a fig-
ure of merit to each coded solution. During
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Figure 2: Coding of the chromosome

the run, parents must be selected and recom-
bined to generate offspring. These aspects are
described below.

3.2 Data Coding

This step consists of converting each point of
the state domain into a chromosome used by
the Evolutionary Algorithm. It is assumed
that a potential solution may be represented as
a set of parameters. These parameters (known
as genes) are joined together to form a string
of values (often referred to as chromosome).
In genetic terms, the set of parameters repre-
sented by a particular chromosome is referred
to as the genotype. The genotype contains the
information required to construct an organism
which is referred to as the phenotype. In our
problem, the state variables (which contain all
the information needed to define the connected
components) consist of the partition of the set
of nodes into subsets, each node belonging to
one and only one subset (with no empty sub-
set). Furthermore, a power factor is associated
to each subset to define the limit between two
different components (see figure 2).

To create an initial population of individu-
als (random graph partitioning), the following
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Figure 3: Random graph partitioning

steps are applied (see figure 3) :

1. K different nodes are randomly selected
from the network (K represent the num-
ber of connected components (2 in the ex-
ample)). Those nodes are the initial K
connected components and are then la-
beled with different symbols (A and B
here) ;

2. the neighbors of a component ¢ (i = 1..K)
are checked (a node is said to be a neigh-
bor of a connected component if there is
a link between this node and a node be-
longing to the connected component). If
this node is free, then it is associated to
the component ¢ else this node is already
associated to another component and the
link joining the current component to the
neighbor node is randomly cut into two
segments.

3. step 2 is repeated till all the nodes of the
network are labeled.

This process enable the creation of an initial
population of random graph partition into con-
nected components which must be now evalu-
ated with the fitness function.

3.3 Fitness Function

Given a particular chromosome, the fitness
function returns a single numerical “fitness”,
or “figure of merit”, which is supposed to be
proportional to the “utility” or “ability” of the
individual which that chromosome represents.
In our application, the two objective of sectors
balancing (f;) and minimization of coordina-
tion (f.) are gathered into a single fitness in
the following way :

f(chrom) = afy(chrom) + (1 — ) fc(chrom);

with
k=K w
k) - W
fo(chrom) = Z ot )W :d
k=1 K
fe(chrom) = W we(k)
k=1
and
k=K
W = Z w(k)
k=1
e ac0,1];

e w(k) control workload in the sector k;

o w,.(k) coordination workload in the sector

k.

3.4 Reproduction

During the reproductive phase of the EA, in-
dividuals are selected from the population and
recombined, producing offspring which will
comprise the next generation. Parents are se-
lected randomly from the population using a
scheme which favors the more fit individuals
(”Stochastic Remainder Without Replacement
Selection”). Good individuals will probably
be selected several times in a generation, poor
ones may not be at all.



Figure 4: Mutation operators

3.5 Recombination Operators

When a population has been created and the
best individuals selected, the associated di-
versity decreased. To improve this diversity
and to have a chance to explore new regions
of the state domain, different recombination
operators are randomly applied. These op-
erator are stochastic, and modified more or
less the structure of the chromosome. In our
application crossover and mutation operators
have been developed but only mutation has
been applied because offsprings generated by
crossover needed repairing in order to respect
constraints. Repairing operator was very pe-
nalizing and then has been abandoned.

Mutation operators can be classified into
three categories (see figure 4) :

1. Strong mutation. This operator modi-
fied all the connected components by ran-
domly choosing K new initial nodes and
propagating the new components as for
the initialization process;

2. Medium mutation. This mutation consists
in statistically selecting the most unbal-
anced component in the chromosome and
to (statistically) identify the neighboring

Medium Mutation
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Figure 5: Structure of the test network

component which will better correct the
weight of the current component by ex-
changing one node. After applying this
operator one must check that the com-
ponent which loses one node is still con-
nected. As a matter of fact, this operator
can break the connectivity as it is shown
in the figure 5

Then the mutation will be accepted only
if the new associated component is still
connected. To check this property, a con-
nectedness algorithm is applied to the sus-
pected component. The basic step of this
algorithm is the fusion of adjacent ver-
tices. We starts with some vertex in the
graph and fuse all vertices that are adja-
cent to it. Then we take the fused vertex
and again fuse with it all those vertices
that are adjacent to it now. This process
of fusion is repeat until no more vertices
can be fused. This indicates that a con-
nected component has been “fused” to a
single vertex. If this exhausts every ver-
tex in the initial graph, the graph is con-
nected.

3. Weak mutation. This operator works the
same way as the previous one but only the
respective power factor are modify on the
two selected components (no repairing is
needed).

When a Medium or a Weak mutation has
been decided, the stochastic balancing process
induced by there application is applied several
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Figure 6: Symmetrical test network

times in order to speed up the convergence on
the first part of the criterium (balancing).

4 Application to test net-
works

This method has been successively applied to
different kind of networks with several hundred
nodes. To investigate the performance of the
algorithm, a serie of networks with exact solu-
tions have been used. In all cases, the expected
exact solution have been found but sometime
further exact solution have been discover by
the sharing mechanisms. Figures 6, 7, rep-
resent two test networks with exact solutions
(324 nodes and 400 nodes respectively).

In the first one, an exact solution with 81
components can be be identified (this symmet-
rical solution is trivial for a human being be-
cause of our brain ability to investigate symme-
tries); in the second one an exact solution with
100 components has been hidden in this ran-
dom network. From the computer, both net-
works represent the same difficulty but for a
human being the first one is much more eas-
ier. The associated EA parameters were the
followings :
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Figure 7: Random test network
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Figure 8: Results

population size : 100

number of generations : 100

probability of mutation : 0.7

sharing (an adaptative clusterised sharing
has been used) : yes

ellitism : yes

The associated fitness evolution (best and
average fitness on population for each genera-
tion) are given on figure 8 for the symmetrical
network and on figure 9 for the random net-
work.
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Figure 9: Results

In both cases, the fitness reaches “1.0” which
is the optimum according to the fitness calcu-
lation. The large evolution steps are due to the
random balancing process during the medium
and weak mutations. The execution time was
about of 10 minutes for both network on a Pen-
tium (133 Mhz).

5 Conclusion

This new approach has given very good results
and seems to be very well adapted to the air
network partitioning problem. It respects the
major operational constraints (the synthesized
sectors met the route convexity constraint (not
the space convexity), the safety constraint and
the min stay time constraint) and can generate
three dimensional sectors with planar vertical
boundaries after applying an algorithm which
synthesis spatial envelops from connected com-
ponents (this aspect has not been develop for
concision). Furthermore, it circumvents the
weak points of the first approach[1] by work-
ing on the network itself instead of the geo-
graphical airspace. The method used to create
the initial network depends only of the traffic
itself and can investigate organized traffic or

Free Route! traffic.

Having now a good method to sectorize
airspace, the workload definition has to be re-
fined in a way to be more realistic.
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