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Abstract

Air traffic growmth and especially hubs development
causenew significantcongestiorandgrounddelayson
majorairports.

Accuratemodelsof airporttraffic predictioncanpro-
vide new toolsto assistgroundcontrollersin choosing
the besttaxiwaysandthe mostadaptecholding points
for aircraft. Suchtools could also be usedby airport
designergo evaluatepossibleimprovementson airport
configurationsandairportstructure.

In this paper a groundtraffic simulationtool is pro-
posedandappliedto RoissyCharledDe GaulleandOrly
airports. A global optimizationmethodusing genetic
algorithmsis comparedo a 1-to-nstratey to minimize
time spentbetweengateand runway, while respecting
aircraftseparatiorandrunway capacity

In orderto comparethe efficiencgy of the different
optimizationmethods simulationsarecarriedout on a
onedaytraffic sample andgrounddelaydueto holding
pointsor taxiway lengthenings correlatedo thetraffic
densityontheairport.

1

Traffic delaydueto airportcongestiorand groundop-
erationshecomesnoreandmorepenalizingin thetotal
gate-to-gatdlight cycle. This phenomenorcanbe in
a large part attributed to recenthubsdevelopment,as
all departuresndarrivals aretendingto be scheduled
at the sametime. Moreover, mary ATC problemsand
ervironmentalinefficienciescan appearas a result of
taxi queueingandtake-off time uncertainty As airport
designersarein chageto build new taxiwaysto reduce
congestiorandimprove groundoperationsgroundsim-
ulationtools becomeessentiato validatetheir choices
beforerealization.

Even if mostresearchprojectsare concentratedn
decisionmaking tools for airspacecontrollersand do
not considergroundoperationaitilities, highly detailed
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models of airport operationsalready exist, such as
SIMMOD* or TAAM?. They canbeusefulto evaluate
qualitatively the relative effects of variousairportim-
provements. The DP? project ([IDA*98]) focuseson
improving the performancef departureperationsFi-
nally, a componenbf the TARMAC? projectfocuses
on the ATC-relatedtraffic planningsystemdor airport
movements.

In this paper a groundtraffic simulationtool with a
conflictresolutionmoduleis introducedandtestedon a
onedaytraffic sampleon RoissyCharlesDe Gaulleand
Orly airports.Differentoptimizationstrat@iesareused
to find the besttrajectoryand the most adaptechold-
ing pointsfor taxiing aircraft. The goalis to minimize
thetime spentfrom gateto take-off or from landingto
gate, respectingthe separatiorwith otheraircraft and
the runway capacity During the optimizationprocess,
actualoneway taxiways,operationahirportconfigura-
tionsandspeeduncertaintyareconsidered.

2 Problemmodeling

Theproblemisto find, for eachaircraft,anoptimalpath
fromits gateto agivenrunwaytake-off positionor from
its runway exit to its gateposition, respectinga given
separatiorbetweenaircraft.

An optimal path can have differentdefinitions: for
example thelengthof the pathor thetotal taxiingtime.
At the sametopic, holdingon ataxiway canbe moreor
lesspenalizingthanincreasinghelengthof the pathor
holdingatthe gateposition.

1SIMulationMODel (FAA)

2Total AirspaceandAirport Modeler(PrestorGroup)
3DeparturePlaner

4Taxi andRampManagemen&nd Control (DLR)
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Figurel: Roissyairportgraph- Exampleof shorteseindalternatepaths
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Figure2: Orly airportgraph- Exampleof shorteseindalternatgpaths



Thereforea global optimum criteriawill have to be
definedin the following. However, the purposeof this
articleis notto discusghechoiceof suchcriteria,which
can be refinedwithout modifying the algorithmitself,
consideringmary differentfactorsrelatedto theairport
geometrythetraffic, or airlinespreferences...

By theway, it is quitedifficult to predictwith agood
accurag the future positionsof aircraft on taxiways.
Firstof all, theexactdeparturdgimeis generallyknown
only afew minutesin advance(mary factorscancause
delays),andthe exactlandingtime depend®n therun-
way sequencing. Hence,the proposedmodel should
take into accountspeeduncertaintyand must be reg-
ularly updatedwith realaircraftpositions.

2.1 Airport structure

An airportis describedoy its gatestaxiwaysandrun-
ways. Differentkind of taxiwayscanbe differenced:

e Gate specific access(entries, forward exits or
push-backs);haracterizethy averylow speed;

e Runways access(entries and exits), containing
the actualholding points beforetake-off and exit
pointsafterlandingwith specificspeedimitations;

e Taxiways intersectingrunways, with accessre-
strictions;

e Simpletaxiways,wherespeedimitationsis mod-
eledasafunctionof theturningrate(figure 3).

Connectiondetweentaxiways are limited (it is not
alwayspossibleto proceedfrom a taxiway to anothey
evenif they areintersecting). The airport description
specifyusabletaxiwaysconnections.

Thus, the airportis definedby a graph: links repre-
sentconnectiondbetweentaxiways whereasnodesare
taxiways themseles, gate positions, and landing or
take-off points. The costfrom a taxiway nodeto its
connectechodesis the time spentto proceedvia this
taxiway, taking into accountspeedlimitations due to
this taxiway. The costfrom the othernodes(gatesand
runway positions)to their connectedodess null.

Figure 1 representghe graphsof Roissyand Orly
airports. Thesegraphsare obviously connected Clas-
sic graphalgorithmscanbe usedto computealternatve
pathsfor aircraft:

Speed limitation (m/s)

10

Turning rate (°)
0O 10 20 30 40 50 60 70 80 90

Figure3: Speedimitation asafunctionof turningrate

e An A* algorithm [Pea84 can computethe best
pathandthecorrespondingninimaltime spentbe-
tweentwo givennodes(gateandrunway entryfor
example).

e A Dijkstra algorithm[AMO93] cancomputebest
pathsandcorrespondingninimal time spentfrom
agivennodeto every othernode.

e A Recursve Enumeratioralgorithm[MJ96] using
the Dijkstra’s resultcancomputethe k bestpaths
from a givennodeto another

e A BranchandBoundalgorithm[HT95] cancom-
pute all alternatepathslengtheningthe bestpath
lessthana givendistanceor time.

2.2 Air craft model

Aircraft aredescribedy their flight-plan (ident,depar
ture or arrival time, gate position, requestedunway,
eventually their CFMU slot...), their wake turbulence
catgory (low, mediumor high) and their take off or
landingdistance.

In orderto perform conflict detection,a model for
aircraftseparations defined.This modeltakesinto ac-
countrunwaysarea,90 metersaway from eachside of
the runway (or 150 metersaway on bad weathercon-
ditions). On thesearea,aircraft are considerecn the
runway evenif they arenottakingoff or landing.

Aircraft separatioomodelis definedasfollows:

e aircraft on gate position are separatedwith all
otheraircraft.

e The distancebetweentwo taxiing aircraft must
never belowerthan60 meters.

o No morethanoneaircraftat atime cantake off or
landona givenrunway.



e A time separatiorof 1, 2 or 3 minutes(depending
on the aircraft cateyory) is necessarpafter a take
off to clearnext take off or landingfrom wake tur-
bulence.

e Whenanaircraftis proceedindor take off or land-
ing onagivenrunway, otheraircraftcanbetaxiing
onthesameunwayareaonly if they arebehindthe
proceedingne.

2.3 Speeduncertainty

Speeduncertaintyis modeledas a fixed percentagef
the initial definedspeed(which is function of proce-
duresandturning rate). Therefore,an aircraftis con-
sideredto occupy multiple possiblepositionsata given
time.

Separatioris ensuredf all of thepossibleaircraftpo-
sitionsareseparatedrom others,asdefinedbefore.

Whenanaircraftis following anotherone, its speed
uncertaintywill be reducedasthe pilot won’t go faster
thanthefirst one.

Speeduncertaintyreduceghevalidity periodof pre-
dictions. Thus,simulationswith speeduncertaintywill
becarriedoutwith alowertimewindow (see2.5).

2.4 Air craft maneuwers

In orderto minimizethetotal delayandto ensuresepa-
rations,the pathof anaircraftcanbe modifiedandair-
craft canhold positionat the gate,on taxiway or queue
attheholdingpoint beforetake off.
Thus,agroundcontrolorderis describedy :

e The path that the aircraft must follow, choosen
amongthe computedpossible pathsfor the air-
craft;

¢ Eventually the holding positionp onthis pathand
thetime ¢ until which theaircraftmusthold on.

In orderto performacceptablananeuers,only one
holdingordershouldbegivento the pilot atatime, and
proposedlternative pathsshouldnotleadanaircraftto
usethe sametaxiway twice.

With sucha holding model (hold at positionp un-
til time ¢) uncertaintiedefinedbeforecanbe reduced,
while referencinga preciseholding positionanda pre-
ciseendholdingtime (seefigure4).
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2.5 Simulation model

As the aircraft future positionsand movementsare not
known with agoodaccurag, it is necessaryo regularly
updatethe situation,every A minutesfor example. By
the sametime, looking a long periodaheads not pos-
sibleaspredictionsarenot goodenough.

Consequentha time window T, > A is defined.
Only aircrafttaxiingin thetime window will beconsid-
ered.Thetimewindow will beshiftedevery A minutes,
the problemreconsiderecnda new optimizationper
formed(seefigureb).

At each simulation step (every A minutes), traf-
fic predictionis performedfor the next T, minutes
andpairsof conflicting aircraft positionsareextracted.
Conflict resolutionfor this simulation step consistin
choosindor eachaircrafta pathamongthe givensetof
possiblepathsandanoptionalholdingpointandtimeto
ensureseparations.



2.6 Global optimum criteria

3.2 Sorting method

In the currentversion,the global criteriato minimize As last consideredaircraft are extremely penalized

is definedby thetotal rolling time (including queueing
for runwaytime), addedo thetime spentin lengthened
trajectory With this definition, lengtheningtrajectory
appeardo betwice morepenalizingthanholding posi-
tion.

3 A*. 1-to-nstrategy

In this strateyy, aircraft are sortedand consideredne
aftertheother

The optimizationproblemis reducedo oneaircraft:
the algorithm must find the bestpath and/orthe best
holding point for the aircraft, taking into accountthe
trajectoriesof the otheraircraftalreadyconsidered.In
this point of view, first consideredircrafthave priority
onlastconsidereaircraft.

3.1 Graph modeling

The 1-to-nstrateyy for anaircraftcanbe modeledasa
graphexplorationproblem:

¢ A nodeof thegraphis a positionin a pathp; of the
aircraftattime.

e An heuristicfunctionfor this nodeis the minimal
remainingtime to reachtheendof the path.

¢ If anoderepresents conflicting positionwith al-
readyconsideredircraft,it hasno son.

e Eachnonconflictingnodehastwo sons:

— Thefirst sonis the next positionin the same
pathp; attimet + 1 (theaircraftgoforward).
Thecostto reachthis sonis 1.

— The secondsonis the samepositionat time
t + 1 (the aircraft holds position at time t).
The costto reachthis sonis 2, asa delayis
givento theaircraft.

e Therootnodesarethefirst positiononeachpathp
of theaircraftat currenttime ¢,.

e Theterminalnodesarethe onesdescribinga non
conflictingpositionof theaircraftattime tg + 7,.

An A* algorithmcaneasilyfind the bestsolutionfor
theaircraft.

(they mustavoid all first consideredaircraft) the way
to sortaircraftis a determiningfactor

A simpleway to assignpriority levelsis to consider
the flight-plan transmissiontime to the ground con-
trollers.

This option seamghe mostrealisticasgroundcon-
trollers canhardlytake into accountanaircraftwithout
its flight-plan. In the simulationcontext, this is equiv-
alentwith sortingaircraft by their departureor arrival
time.

However, this optionmustberefined:

e Aslandingaircraftcant hold positionbeforeexit-
ing runway, their priority level mustbehigherthan
all taking off aircraft.

e Queueingfor runway aircraft shouldbe sortedin
their queueorder

In orderto satisfytheseprinciples,a time T}, is af-
fectedto eachaircraftasa functionof its beginingtime
T, andits remainingtime ¢,.:

T, = Ty + t, for departures,

T, = Ty — lhour for arrivals.

Aircraft aresortedby increasingvaluesof T5,.

4 GeneticAlgorithms

In thesestratgjies, classicalGenetic Algorithms and
EvolutionaryComputatiorprinciplessuchasdescribed
in theliterature[Gol89, Mic92] areused.Thealgorithm
is usedevery A minuteson the problemdefinedin sec-
tion 2.5.

Two stratgjies are developed: in the first one, the
algorithmfinds a pathandan optionalholding position
for eachaircraft. In the secundone, the geneticalgo-
rithm finds a pathanda priority level for eachaircratft,
andan A* algorithmis usedto computethe resulting
trajectories.

4.1 Datastructure

During eachoptimizationprocessgeachaircrafttrajec-
tory is describedy its own parameters:

e The first stratgy needs3 numbers(n, p, t) for
eachaircraft: n is the numberof the path,p and
t the evantualholding positionfor the aircraft (if



p is reachedafter ¢, the aircraft doesnot stop) as
detailedin section2.4.

e Thesecundstratgy needs2 numbergqn, prio) for
eachaircraft: n is thenumberof the pathandprio
its priority level.

4.2 Fitnessfunction

For the two stratgies, the fithessfunction mustensure
thata solutionwithoutary conflictis alwaysbetterthan
a solutionwith a conflict. Consequentlyt wasdecided
that the fithessof a solutionwith a conflict shouldbe
Iessthan% andthefitnessof asolutionwithoutany con-
flict morethan.

Thus,for a solutionwith n. remainingconflicts,

1

F =
14+ n.

For asolutionwithout ary conflict,

L1
2 2+Z£\;1dz’+li

whered; is the delayof aircrafti andi; thetime spent
by aircrafti in lengthenedrajectory

4.3 Crosswer operator

Theconflictresolutionproblemis partially separables
definedin [DA98, DAN96]. In orderto increasethe
probability of producingchildrenwith a betterfitness
than their parents,principlesappliedin [DA98] were
applied. For eachaircrafti of a populationelement,a
localfitnessF; is definedas:

e for anaircraftwith n. > 0 conflicts,
F; = 1000 * ng;

o for anonconflictingaircraft F; = d; + [;.

The crossw@er operatoris presentedn the figure 6.
Firsttwo populationelementarerandomlychosen For
eachparentA andB, fitnessA; and B; of aircraft are
comparedlf A; < B;, thechildrenwill take aircrafts
of parentA. If B; <« A;, thechildrenwill take aircraft
i of parentB. If A; = B; childrenrandomlychoose
aircraft A4; or B; or evena combinationof 4; andB,;.
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Figure6: Cross@eroperator

4.4 Mutation operator

For eachcandidateto mutation, parametersf an air-
craft having oneof theworstlocal fitnessaremodified.

Thecross@erandmutationoperatorarequitedeter
ministic atthe beginningasmary conflictshave to beto
solved. They focuson makingfeasiblesolutions.When
solutionswithout conflict comein the population,they
becomedessdeterministic.

45 Clusters

In orderto lower the compleity of the problemas of-
ten as possible,a transitve closureis appliedon con-
flicting aircraft pairsandgivesthe differentclustersof
conflictingaircraftiDAN96]. Thedifferentclusterswill

besolvedindependenthatfirst. If theresolutionof two
clusterscreatesiew conflictingpositionsbetweerthem,
the two clustersare unified andthe resultantclusteris
solved.

4.6 Sharing

The problemis very combinatoriandmay have mary
local optima. In orderto preventthe algorithmfrom a
prematureconvergence the sharingprocessntroduced
by Yin and Germay[YG93] is used. The compleity
of this sharingprocesdhasthe greatadvantageto bein
nlog(n) (insteadof n? for classicalsharing)if n is the
sizeof the population.

A distancebetweentwo chromosomesnustbe de-
fined to implementa sharingprocess.Defining a dis-
tancebetweentwo setsof N trajectoriesis not very
simple. In the experiments,the following distanceis
introduced:
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14, (resplp,) is theit" aircraftpathlengthof chromo-
someA (respB). As the pathsaresortedaccordingto  °f

their length, the distanceincreaseswith the difference | N
of lengths. 7 S
4.7 Ending criteria | e

As time to solve a problemis limited, the numberof
generationss limited: aslong asno availablesolution s 5 10 is 2 = 2 s
is found,thenumberof generationis limited to 50. The
algorithmis stopped20 generationsafter the first ac-
ceptablesolution(with no remainingconflict) is found.

Figure 7: Meandelay asa function of the numberof
moving aircraft.

35

t-> Nb acft 1-to-n method
Global method -------

5 Experimental results 7 el |

5.1 Simulations

Simulationsare carried out with real flight plans of

RoissyCharlesDe GaulleandOrly airportson a com-

pleteday (May 18™th 1999).
Threestratgjiesarecompared

¢ in the“1-to-n method”, aircraftaresortedasde-
scribedin 3.2. They keepthe samepriority level
duringall thesimulationandanA* algorithmfinds ‘ ‘ ‘ ‘
thebestsolution. ° ® 1 1 % 25

e inthe“Global method”, ageneticalgorithmfinds Figure8: Numberof aircraftasa functionof time.
a path and an optional holding position for each
aircraftin orderto minimizetheglobalcriteriade-
scribedin 2.6.

5.2 Comparing the strategies

As Roissyand Orly simulation resultshas given the
samerelative conclusionsabout the 3 stratgies ef-
ficiengy, figuresrelatedin this article only concerns
RoissyCharlesDe Gaulleairport.

Figure 7 givesthe meandelay as a function of the

¢ in the “Mixed global method”, a geneticalgo-
rithm finds a pathanda priority level for eachair-
craftandthefitnessfunctionis computedy anA*
algorithmappliedon sortedaircraft.

Simulations parameters: numberof aircraft moving on the taxiwaysfor the dif-
Timewindow : T,, = 5mn ferentmethods Whennumberof aircraftincreasesthe
Simulationstep: A = 2mn mixed methodappeargo bethe bestone.
Speeduncertainty. § = 10% Figure8 givesfor thedifferentstratgyiesthe number
GA Populationsize: 200 of aircraftsimultaneouslynoving asafunctionof time.
GA numberof generations50 It appeardhatthe mixedmethodkeepsa lower number
GA Crosswerrate:60% of moving aircraft during heary time periods: a good
GA Mutationrate:15% resolutionof groundtraffic conflictsallows to decrease
GA Selectionprinciple: stochastiaeminderwithout delayandthenleadsbettersituationswith lessmaoving
replacement aircraft.
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Figure9: Numberof generationssa functionof time

5.3 Geneticalgorithm efficiency

In orderto obsenethe GA efficiency, figure 9 givesthe
numberof generationsequiredby the GA asafunction
of time for thetwo GA strat@ies.

For the global method the differentpeakswhich ap-
pearsat 7, 10am,1 and7 pmarethetraffic peaks.

For the mixedmethod the global optimumis always
found with a few numberof generations sortingair-
craft by evolutive priority levels seamso be very effi-
cientasfarasgroundconflictsresolutionis concerned.

6 Conclusionand further work

A preliminarywork hasshown thatit was possibleto

build a taxiway adviserin orderto optimizethe ground
traffic onbusyairportssuchasRoissyCharlesdeGaulle
andOrly. It canbe noticedthatthe modelingwaseas-
ily improvedwith new runwayson RoissyCharlesDe

Gaulle, differentspeedsuncertaintieson speed<tc...
without changingthe algorithmitself. GeneticAlgo-

rithms arevery efficient on the problemasthey search
theglobaloptimumof theproblemwhereas determin-
istic algorithm suchas a 1-to-n stratgly causesmore
delay

Further work will concentratein improving the
global criteria for GeneticAlgorithms, taking into ac-
count for example take off sequencingneedsof ap-
proachsectorsor priority levelsfor slotteddepartures.
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