A Combined Nelder-Mead Simplex and Genetic Algorithm

Nicolas Durand
Laboratoire d’Optimisation Globale
Centre d’Etudes de la Navigation Aérienne
7, av Edouard Belin
31055 Toulouse Cedex France
durand@recherche.enac.fr
tel: (33) 562 17 40 54

Abstract

It is usually said that genetic algorithm
should be used when nothing else works. In
practice, genetic algorithm are very often
used for large sized global optimization prob-
lems, but are not very efficient for local op-
timization problems. The Nelder-Mead sim-
plex algorithm has some common character-
istics with genetic algorithm, but it can only
find a local optimum close to the starting
point. In this article, a combined Nelder-
Mead Simplex and Genetic algorithm is in-
troduced and tested on classical test func-
tions on which both genetic algorithm or lo-
cal optimization techniques are not efficient
when separately used.

Introduction

Genetic algorithm are not very fast to solve local op-
timization problems but can be very powerful to find
a global optimum area. However, it is sometimes very
difficult to find the minimum of a function using a ge-
netic algorithm because bad solutions can be very near
to the global optimum so that when the genetic algo-
rithm is unlucky it may have some problems to find
and remain in good areas. Local optimization tech-
niques such as the Nelder-Mead Simplex have some
common characteristics with genetic algorithm as they
do not use the successive derivatives of the function
and deals with a population of points instead of a sin-
gle point. Furthermore, they are quite efficient to find
a local optimum very quickly. In this article a tech-
nique that combines the Nelder-Mead Simplex and Ge-
netic algorithm is defined and tested on classical test
functions on which genetic algorithm or local optimiza-
tion techniques are not efficient.

Jean-Marc Alliot
Laboratoire d’Optimisation Globale
Centre d’Etudes de la Navigation Aérienne
7, av Edouard Belin
31055 Toulouse Cedex France
alliot@recherche.enac.fr
tel: (33) 562 17 41 24

\AAWAA%.
RATAT

Figure 1: F(z) (n =1, z € [-20,20]).

We will first consider Griewank’s classical test function
(Ingber and Rosen 1992b) :

10 10
1 T;
G(z1,...,710) = 4000 23712 - HCOS(Tl.)
i=1 i=1 t
Vi € [1,10], =; € [-1000,1000]

Let’s generalize this function to any dimension by
defining :

F(z1,...,2,) =

1 n , n ;
00m ;mz - LIICOS(W)
Vi € [1,n], x; € [-1000,1000]

represented on figure 1 for n =1 and z € [-20, 20].

A local optimization method may find the global min-
imum of the function (g = 0), only if the starting

point zo belongs to | — m,7[. If n > 1, the global min-
imum may be found only if the starting point belongs

to Hie[l,n]] - \/’2777 \/iﬂ-[

Genetic algorithm, on the contrary may easily find
points in this area, but the fitness of these elements
can be high and they may disappear with the selec-
tion process.

This probably explains why GAs fail on this problem
when n exceeds 30 (Durand and Alliot 1998).

In this article, GAs use a Nelder-Mead simplexes popu-
lation to take advantage of the good properties of such
local optimization methods. The aim of the genetic al-
gorithm is to find good areas for the simplex algorithm
whereas the latter will find the local minimum in this
area.

In the first part, the Nelder-Mead simplex algorithm is
presented. Part 2 describes how the genetic algorithm
and the Nelder-Mead simplex algorithm are combined.
In part 3 the algorithm is tested on the Griewank’s
function. Results on Corana’s function are also given.

1 The Nelder-Mead algorithm

Let’s assume that the problem to be solved is the fol-
lowing :

min f(v)
v E R

For functions over ", the Nelder-Mead method oper-
ates with a simplex S in ", which is specified by its
(n + 1) vertices: (vg,v1,...,v). The best vertex wvg
is designated to be the vertex for which f(vo) < f(v;)
for 5 = 1,...,n. Let’s describe a complete iteration
from simplex Sj to simplex Sg41:

First vy,...,v, are reflected through the best vertex
vg. Figure 2 shows an example for n = 2. The reflected
vertices are labeled r1,...,7,.

o If a reflected vertex gives a better function value
than vy, then the reflection step is successful and
the algorithm tries an expansion step. The ez-
pansion step consists of expanding each reflected
edge (r; — vo) to twice its length to give a new
expansion vertex e;.

— If the expansion step is successful:

3.7 € [lan]a f(ej) < f(UO)

then Sgy1 = Sort(vg,ei,...,e,) where Sort
sorts vertices according to their increasing
function values.

v2

c2

el (r vO

r2

€2

Figure 2: The 3 possible steps given the simplex S
with vertices (vg, vy, v2).

— If the expansion test is not successful:
V] € [Ln]a f(UO) S f(ej)
then Sip11 = Sort(ve,T1,..-,7n)-

o If the reflection step is not successful:

VJ € [l,TL], f(UO) S f(,rj)

then Sgy1 = Sort(vo,ci,...,c,) where the con-
tracted vertex c¢; is the middle of vy and v; for
j=1,...,n.

The algorithm is stopped when the size of S, is smaller
than the required precision e:

(i,5) € [1,n]?

d(vi,vj) S €

where d(z,y) is a distance measure between z and y.
Convergence of the algorithm can be found in (Nelder
and Mead 1965, McKinnon 1996).

2 Combination with genetic algorithm

In this paper, classical Genetic Algorithms and Evo-
lutionary Computation principles such as described in
the literature (Goldberg 1989, Holland 1975) are used.

A population element of a classical genetic algorithm is
generally coded by the variables of the problem. For
example, on the Griewank’s function the population
elements belong to [—1000,1000]™. Here, a popula-
tion element is defined as a simplex S of size p where
p < n+ 1. The genetic algorithm selects, reproduces,
crosses, and mutates good simplexes. In addition, a
few steps of the Nelder-Mead algorithm are executed
at each generation to improve the local search.

Doing many steps of the Nelder-Mead algorithm at
generation 0 is of low interest because the probability
to find a local optimum is then very high and when the
Nelder-Mead algorithm has converged, the simplex is
contracted and contains p times the same information.
Furthermore, for large problems, large populations are
generally required, the computing time can rapidly in-
crease.

2.1 Coding

A population element is here defined by p points,
where p is the simplex size chosen. In the Nelder-
Mead algorithm, if the problem is of size n a simplex
of size n + 1 is generally used to guarantee the con-
vergence to the local minimum. The use of a smaller
simplex size can lead to a premature convergence of
the simplex. In the present work, premature conver-
gence is less important as simplexes are recombined
at each generation by the genetic algorithm. Further-
more with large size problem, the computing time can
become the sinews of war and it may not be possible
to use simplexes of size n+ 1. In practice, a population
element is coded by a (p x n) matrix (each line codes
a simplex vertex). Choosing the good simplex size is
not discussed in this article.

2.2 Fitness function

The value of a population element (a simplex S) is the
evaluation of the best vertex of S.

2.3 Crossover

It is all the more important to keep the diversity of the
population because the simplex algorithm is determin-
istic and converges to a local optimum. This function
is ensured by the crossover and mutation operators.

Different crossover operators can be imagined. The
crossover that was chosen in the application is pre-
sented on figures 3 and 4.

A mixing crossover operator (see figure 3) is applied on
the first half of the crossed population: element (i, j)
of child 1 can be either element (i,j) of parent 1 or

parent 1 parent 2
nvariables nvariables
vertex 1 vertex 1
vertex 2 vertex 2
vertex p vertex p
.
vertex 1 vertex 1
vertex 2 vertex 2
vertex p vertex p
nvariables nvariables
child 1 child 2

Figure 3: Mixing crossover operator applied on half

the crossed population.

parent 1 parent 2

n variables n variables

vertex 1

vertex 2

vertex p

vertex 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

veriex 2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

vertex p ‘ ‘ ‘ ‘ ‘

n variables
child 2

n variables

child 1

Figure 4: Arithmetic crossover operator applied
half the crossed population.

vertex 1

vertex 2

vertex p

vertex 1

vertex 2

vertex p

parent 2 with probability % An arithmetic crossover
is applied on the second half of the crossed popula-
tion: element (7,j) of child 1 is a linear combination
of elements (i, j) of parent 1 and parent 2 (see figure

aPi(i,5) + (1 —) Py(i,)

a € [-0.5,1.5]

2.4 Mutation

As for the crossover operator there are also many ways
to define a mutation operator. One of them (see figure
5) can be to randomly choose one vertex of the parent

vertex 0

parent child
nvariables

Figure 5: Mutation operator.

and to add a Gaussian noise to it (in the application:
o =0.1).

3 Results on Griewank’s function

Two tests are repeated a hundred times for dif-
ferent size problems. The first hundred runs uses
the combined Simplex Genetic Algorithm for n =
10,20,...100. The second hundred runs uses a classi-
cal Genetic Algorithm for n = 10,20, 30. In both tests
the following parameters are used:

e crossover probability: 0.5;
e mutation probability: 0.1;

e stochastic reminder without replacement as de-
scribed in(Goldberg 1989) is used for selection;

e a clustered sharing process as described in (Yin
and Germay 1993) is used with dmax = 1 and
dmin = dm%; the distance between two sim-
plexes Sy and Sy (S; and S» are matrices of size
p x n) is defined by the distance between the best

vertex of S; (S1(0)) and the best vertex of Sy
(52(0)):

1 < : ,
d(S1,52) = EZ|51(0>J)—52(0;J)|
j=1

For the classical genetic algorithm, the distance
between two elements E; and E» (E; and E are
vectors of size n) is:

ABLE) = 3 IEG) - Ball)
j=1

e clitism is used: best elements of each cluster are
protected.

e As genetic algorithm usually search the maximum
of a positive function, the fitness of a vertex v will
be set to 2500 — F(v) instead of F'(v);

add anoise =
% vertex 0
Z

2e+07 T T —T
maximum function evaluations ——+—— |
minimum function evaluations -«
1.8e+07 standard deviation e

1.6e+07 /
1.4e+07

1.2e+07 /
le+07

8e+06

6e+06

4e+06

2e+06

Figure 6: Griewank function: function evaluations re-
quired / dimension.

e the algorithm is stopped when the best vertex x
or the best element x satisfies:

Vi € [1,n], |z;| < 0.1

For the combined algorithm, p = n+1 and the popula-
tion size is set to 50 elements (the population contains
50 x (n + 1) vectors at each generation). 100 sim-
plex iterations are performed at each generation. The
simplex algorithm is stopped when the simplex size is
smaller than 0.1.

Figure 6 gives the minimum, the mean, the maximum,
and standard deviation of the number of fitness evalu-
ations required in the Combined Simplex Genetic algo-
rithm simulation. The mean, minimum and maximum
generations required and the CPU computing time (on
a pentium IT 450) are given on figure 7.

The standard deviation value increases much more
rapidly than the mean value. This is because the pop-
ulation size (50 elements) becomes too small for large
dimensions: when the algorithm is unlucky it spends a
lot of time in bad areas before the crossover and mu-
tation operators finds the good area. The standard
deviation can be reduced by increasing the population
size, as shown on table 1.

For the classical genetic algorithm, the population size
is set to 500 elements.

2000

minimum generations (100 runs) «+--m:--+
standard deviation s
1800

T T T o
maximum generations (100 runs) =———

1600 /
1400

1200 /
1000

800

600

400

/ q
o Fronmn . TEorT ;- sy ORI - Weeeeeres Moennnee -
© 20 40 60 80 100

Figure 7: Griewank function: number of generations
required / dimension.

dimension 100 100
population size 50 100
mean fit eval 1670089 | 2031982
min fit eval 703475 | 1030459
max fit eval 17664154 | 7024496
o fit eval 2353914 | 1415979
mean gens 154 87
min gens 59 54
max gens 1822 313

o gens 237 58
mean time 1449 2108

Table 1: Convergence with the combined simplex-

genetic algorithm (population size: 50 and 100)

dimension 10 20 30
mean fit eval | 66359 | 454386 | 1269029
min fit eval 54835 | 100566 | 168011
max fit eval | 76549 | 3033930 | 6889923
o fit eval 4193 | 529044 | 1568122
mean gens 200 1379 3896
min gens 165 304 509
max gens 231 9220 21482
o gens 13 1608 4866
mean time 123 821 2293

Table 2: Convergence for Griewank’s function with the
classical GA - population size=550

Table 2 gives the mean, maximum, and standard devi-
ation of the number of fitness evaluations required in
the classical genetic algorithm simulation. For n > 30
the computation time becomes too long: the increas-
ing size of the population slows down the evaluation
process and the sharing process is time consuming.

The mean numbers of function evaluations for the clas-
sical GA and the combined algorithm are compared on
figure 8. The mean computing times are compared on
figure 9.

For dimension 10, the classical genetic algorithm re-
quires less function evaluations than the combined al-
gorithm. However, it is 35 times more time-consuming.
This is because the sharing process is much longer on
a 500 elements population size than on a 50 elements
population size.

For dimension 20, the combined algorithm becomes
more efficient than the genetic algorithm in terms of
number of function evaluations and computing time.
The combined algorithm requires half the number of
function evaluations of the classical algorithm and is
100 times quicker.

It was possible to go to dimension 100 with the com-
bined algorithm in less time than required for dimen-
sion 30 with the classical crossover.

3.1 Corana’s function

This function is presented in (Corana et al. 1987).
We use here the restriction used by Ingber in its arti-
cle (Ingber and Rosen 1992a). The function must be
optimized on [—10000, 10000]". It is defined by :

fo(z) =

N[0.15d;(0.05 S(z;) +)2
Z{ ((i) + 2i)

d; z? otherwise

for |z; — 2| < 0.05 }

1.6e+06 T - — T — T T
classical algorithm (function evaluations) =——t—

1.4e+06

1.2e+06 /
le+06

800000 /

600000 /

400000

200000 [~

10 20 30 40 50 60 70 80 90 100

Figure 8: Griewank function: mean function evalua-
tions / dimension.

2500 T

T T T T T
classical algorithm (computing time) —+—

2000 /

1500

1000 /

500 /

10 20 30 40 50 60 70 80 90 100

Figure 9: Griewank function: mean computing times
/ dimension.

dimension 50
simplex size 51
mean fit eval | 3555248
min fit eval 2977988
max fit eval | 4040803
o fit eval 201593
mean gens 378
min gens 326
max gens 459
o gens 21
mean time 724

Table 3: Corana’s function with the combined algo-
rithm - population size=50

zi = 0.2]|;/0.2| + 0.49999] S(z;)
1 if 2z, >0
S(zz) = 0 if zi =0
-1 if2 <0
dimeas = {1.0,1000.0,10.0,100.0}

This function has 10%" local optima and all points of
[—0.05,0.05]" are global optima. Ingber presents this
function as an excellent test for all global optimization
techniques, and it is interesting to test the combined
algorithm.

Both classical GA and VFSR fail in finding an op-
timum for N > 24 (Durand and Alliot 1998); the
combined genetic algorithm finds the optimum up for
N = 50 (see table 3) and larger sizes are still being
tested.

Conclusion

The common characteristics of the Nelder Mead Sim-
plex and Genetic Algorithm (no need of the function
derivatives, use of populations) was at the origin of this
paper. Whereas GAs are good at exploring new areas,
the Nelder-Mead Simplex can quickly lead to the near-
est local minimum. The Combined Nelder-Mead Sim-
plex and Genetic algorithm introduced was first tested
on Griewank’s test function and results showed that it
was very efficient especially for large dimensions. Re-
sults on Corana’s test function confirmed this result.
This new algorithm is still being tested on other prob-
lems, but we already strongly believe that it should
succeed in many cases.

One of the future challenges will be to try and reduce
the number of function evaluations: in the present al-
gorithm, it was decided that p = n + 1 where p is
the simplex size and n is the dimension of the prob-

lem. Because of this, the number of vertices required
increases linearly with the size of the problem. Prelim-
inary tests have shown that it is possible to reduce the
size of the simplex and still converge to the optimum.

References

Corana, A., M. Marchesi, C. Martini and S. Ridella
(1987). Minimizing multimodal unctions of con-
tinuous variables with the “simulated annealing”
algorithm. In: Proceedings of the ACM Transac-
tion and Mathematical Software. ACM.

Durand, Nicolas and J. M. Alliot (1998). Genetic
crossover operator for partially separable func-
tions. In: Genetic Programming 98.

Goldberg, David (1989). Genetic Algorithms. Addison
Wesley. ISBN: 0-201-15767-5.

Holland, J.H (1975). Adaptation in Natural and Arti-
ficial Systems. University of Michigan press.

Ingber, Lester and Bruce Rosen (1992a). Genetic al-
gorithm and very fast simulated reannealing: a
comparison. Mathematical and Computer Model-
ing 16(1), 87-100.

Ingber, Lester and Bruce Rosen (1992b). Genetic al-
gorithms and very fast simulated re-annealing: a
comparison. Mathematical and computer model-
ing 16(11), 87-100.

McKinnon, K.I.LM. (1996). Convergence of the nelder-
mead simplex method to a non-stationnary point.
Technical report. Department of Mathematics
and Statistics, University of Edimburgh.

Nelder, J.A. and R. Mead (1965). A simplex method
for function minimization. Computer Journal
7, 308-313.

Yin, Xiaodong and Noel Germay (1993). A fast ge-
netic algorithm with sharing scheme using clus-
ter analysis methods in multimodal function
optimization. In: In proceedings of the Artifi-
cial Neural Nets and Genetic Algorithm Interna-
tional Conference, Insbruck Austria (C.R. Reeves
R.F.Albrecht and N.C. Steele, Eds.). Springer-
Verlag.

