Genetic algorithms for air traffic assignment
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Abstract. In this paper, we show how genetic algorithms
can be used to compute automatically a traffic assignment
of aircraft on the air network to increase Air Traffic Control
capacity in high density areas.

1 Introduction

The CENA is the organism in charge of studies and research
for improving the French ATC systems. Studies on the use
of genetic algorithms for conflict resolution and air space sec-
toring have given encouraging results [2, 5], and a new study
has been funded to solve the traffic assignment problem for
Air Traffic Control. This paper summarizes the results of this
study.

When joining two airports, an aircraft must follow routes
and beacons; these beacons are necessary for pilots to know
their position during navigation and help controllers to visu-
alize the traffic. Beacons can either be real radio-navigation
means, such as VOR or ADB, or only the crossing points of
two or more different airways.

Two aircrafts passing the same beacon can collide if their
trajectories become too close; we say that there is a conflict
if aircrafts are closer than (usually) 5 Nautic Miles.

At the dawn of civil aviation, pilots resolved conflicts them-
selves because they always flew in good weather conditions
(good visibility) with low speed aircrafts. On the other hand,
modern jet aircrafts do not enable pilots to resolve conflicts
because of their high speed and their ability to fly with bad
visibility. Therefore, pilots must be helped by an air traffic
controller on the ground who has a global view of the current
traffic distribution in the airspace and can give orders to the
pilots to avoid collisions.

As there are a lot of planes simultaneously present in the
sky, a single controller is not able to manage all of them.
So, airspace is partitioned into different sectors, each of them
being assigned to a controller. In a few words (we will discuss
this in more details later), workload for a controller mainly
depends on three terms:

e the number of planes in the sector; the controller has to
monitor the trajectories: it is called monitoring workload.

o the number of planes crossing the sector boundaries; when
an aircraft crosses a sector boundary, controllers in charge
of the two sectors have to exchange informations about the
flight: this is called coordination workload.
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o the number of plane crossings over beacons. Each crossing
induces a possibility of conflict, and the controller has to
solve these conflicts: it is called conflict workload.

Nowadays, in Europe, traffic assignment can be, and need
to be, seriously improved; when an aircraft goes from airport
A to airport B, the pilot chooses himself a route and informs
the ATC organism with a flight plan. The problem is that
many planes choose to follow the same routes, and, moreover,
never consider the global optimum of the system, but only
their own optimality function. This way of choosing routes
sometimes generates many conflicts on the same beacon in-
ducing overloaded sectors. Traffic assignment aims at chang-
ing aircraft routes to reduce sector congestions, conflicts and
coordinations. Of course, those changes must be done in a way
that does not penalize too much aircraft routes. So a compro-
mise between the aircraft objectives and the ATC objectives
must be found.

There is however a serious constraint for traffic assignment:
all planes going from airport A to airport B must follow the
same route (we call this constraint non segmented Origin-
Destination flow). The reason for this constraint is easy to
understand: if two airlines are linking A to B, the airline being
given the longest route would find this clearly unfair. ..

The goal of this study is to find an automatic way to op-
timize aircraft routing, given aircrafts, airlines and ATC con-
straints. In this paper, we show how well Genetic Algorithms
deal with this problem (after some simplifications and model-
ing). In the first part we describe more precisely our problem
and make some relevant simplifications, in the second one we
present the principle of resolution and we finally give different
results on test networks used to validate the algorithm.

2 A simplified model
2.1 Introduction

Our 3 dimensional transportation network (in the air space)
will be modeled by a classical plannar 2 dimensional network.

This network is partitioned into K sectors, each one be-
ing assigned to a controller who manages all the traffic in it.
An example of sectorised network is given on figure 1 (black
points represent airports).

The controller workload has several origins that can be di-
vided into two categories [11]:

1. there are quantitative factors which include the number of
flights, the number of conflicts etc, which can be precisely
modeled in a mathematical way and handled by an opti-
mization algorithm;
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Figure 1. Sectorised network

2. there are psychological factors such as stress, concentration
etc... which have no evident mathematical formulation but
are in direct relationship with the previous ones according
to the controllers themselves.

Having now a model, we can define more precisely our goals:

we consider an air traffic transportation network in a
2 dimensional space sectorised into K sectors for which
we want to assign traffic between OD pairs in a way that
minimizes extra route distance and reduces sector work-
loads.

This traffic assignment must take the following constraint
into account :

1. the flow between each OD pair must not be partitioned.

This constraint is mandatory, as we want to be sure that
planes of different airlines on the same Origin-Destination will
follow the same route: this is the equity constraint.

2.2 Definition and goals of traffic
assignment

A transportation system basically consists of two elements [10]:

transportation supply and travel demand. The transportation
supply is the set of facilities and means available to the users
of the transportation network. The travel demand is expressed
by the number of users using the network. The interaction
between transportation supply and travel demand produces a
flow pattern on network links. The goal of traffic assignment
is to optimize this interaction to reach a predefine objective
dependent of the problem. In our problem the main difficulty
relies in the underlying dependence of the link costs coming
from the sectoring. As a mater of fact the cost on one link
depends directly on the flow on this link but is also in rela-
tionship (indirectly with the global objective function) with
the flows of all the links in the same sector (we have non-
separable asymmetric link costs). This last point has a serious
influence on the principle of resolution. We are going to dis-
cuss this in the next section.
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3 Principle of resolution
3.1 Traffic assignment algorithms

The equilibrium principle of route choice propounded by War-
drop in 1952 forms the basis of all those algorithms. This
principle says:

“the journey times on all routes actually used are equal,
and less than those which would be experienced by a single
aircraft on any unused route.”

There is a key point in equilibrium assignment: when the
level of demand is sufficiently high, several routes can be used
between the same Origin-Destination pair. This dispersion of
demand over more than one route is entirely realistic: it is
achieved in equilibrium assignment when the assignment of
all the demand to any single route would make the cost on
that route exceed the cost on some other routes. In these cir-
cumstances, the least cost route is not unique, but rather a
number of routes can be used at identical costs. The process of
calculating an equilibrium assignment of traffic for a network
can normally be achieved by an iterative processus and many
traffic assignment algorithms are based on this principle: they
put quanta of traffic on different routes till the equilibrium is
reached. Our problem being a traffic assignment problem on
a network with non separable asymmetric link costs “only”
Dafermos [4] algorithms (or algorithms based on the same
principle) manage this kind of problem. Why can not we use
those algorithms: because none of the Dafermos family algo-
rithms handles the equity constraint that forces all aircrafts
joining two airports to use the same route.

It is clear that handling this constraint will induce worse
solution as it reduces the solution subspace in the state space.
But the equity constraint can not be discarded for political
reasons. So we have to try to find an algorithm which puts all
the flows on the same route between each OD.

If our link costs were separable a simple Dijkstra algorith-
m [?] would have solved the problem because traffic assign-
ment would not have relied on the choosing order of Origin-
Destination pairs when assigning flows. But with non sepa-
rability, traffic assignment depends on the order: as soon as
a path is assigned for an OD pair, all previous assignments
must be reconsidered as the new assignment changes the cost
function by changing the link costs for all links in its sector.

So our problem induces a high combinatory complexity for
which we must try to find a solution in a discrete space with
n! points where n is the number of Origin-Destination pair, a
problem known to be NP_HARD.

According to the number of Origin-Destination pair we
have to handle (several hundred), classical combinatorial op-
timization is not relevant and stochastic optimization seems
to be more suitable. Moreover this kind of problem may have
several optimal (or near optimal) solutions. As our goal is not
to build the ultimate traffic assignment system, but a tool to
help human experts assigning flows, we are definitely inter-
ested in all optimal or nearly optimal solutions the algorithm
might find. This made us reject classical simulated reanneal-
ing optimization which updates only one state variable, even
if it might give better results in some cases [7].

On the other hand, Genetic Algorithms (GAs) maintain
and improve a numerous population of state variables accord-
ing to their fitness and will be able to find several optimal (or
near optimal) solutions. Then, GAs seem to be relevant to
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solve our traffic assignment problem.

4 Genetic algorithms
4.1 Principles

We are using classical Genetic Algorithms and Evolutionary
Computation principles such as described in the litterature [6,
9]; Figure 2 describe the main steps of GAs.

population(k)‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
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Figure 2. GA principle

First a population of points in the state space is random-
ly generated. Then, we compute for each population element
the value of the function to optimize, which is the fitness. In
a second step we select®the best individuals in the popula-
tion according to their fitness. Afterward, we randomly apply
classical operators of crossover and mutation to diversify the
population (they are applied with respective probabilities P
and Py,). At this step a new population has been created and
we apply the process again in an iterative way.

This GA can be improved by including a Simulated An-
nealing process after applying the operators [8]. For example,
after applying the crossover operator, we have four individuals
(two parents P1,P2 and two children C1,C2) with their re-
spective fitness. Afterward, those four individuals compete in
a tournament. The two winners are then inserted in the next
generation. The selection process of the winners is the follow-
ing: if C1 is better than P1 then C1 is selected. Else C'1 will
be selected according to a probability which decreases with
the generation number. At the beginning of the simulation,
C'1 has a probability of 0.5 to be selected even if its fitness is
worse than the fitness of P1 and this probability decreases to

0.01 at the end of the process. A description of this algorithm®

5 Selection aims at reproducing better individual according to their
fitness. We tried two kinds of selection process, Roulette Wheel
Selection” and ” Stochastic Remainder Without Replacement Se-
lection”, the last one always gave better results.

6 We are using our own GA simulator, which includes some goodies
usually not available on public domain GA, such as Simulated
Annealing, very simple parallelism, etc.
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is given on figure 3.

Tournament selection brings some convergence theorems
from the Simulated Annealing theory. On the other hand,
as for Simulated Annealing, the (stochastic) convergence is
ensured only when the fitness probability distribution law is
stationary in each state point [1].
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Figure 3. GA and SA mixed up

4.2 Coding our problem

To code our problem, we did not use binary chromosomes.
The problem is not well suited for binary coding, and, as it
has been advocated already by different experts, a specific
coding with specific operators is usually more efficient.

An example of the coding of a chromosome is given in fig-
ure 4. The chromosome is a list of cells; each cell is the coding
of the path for an OD flow. On the example, we see that all
planes going from airport 1 to airport 16 will follow the path:
airport 1, beacons 4,3,7,12 and airport 16. Planes from 16 to
1 will follow the path 16,11,6,3,4,1 and etc. So, all informa-
tion necessary is encoded in each chromosome. It enables us
to compute for each chromosome the traffic assignment cost
giving the GA fitness.

One difficult point is the initialization of the population: to
create one chromosome, we take into account distance costs
only and we increase them by a random extra cost. Then, we
apply a Dijkstra algorithm to find min cost paths for all the
Origin-Destination pairs. This generates a list of OD paths
which is our chromosome. We repeat these operations till the
population size is reached. According to the deviation of the
blank noise added as a cost, paths more or less different from
the optimal ones are generated (optimal in the sense of the
distance criterium only of course). This initialization method
avoids the creation of purely random paths and ensures, for
instance, that an aircraft coming from Madrid and going to
London will not be routed via Moscow.

We had then to create operators for crossover and muta-
tion. The efficiency of the algorithm depends of the ability
of these operators to create new individuals that respect the
constraints of our problem and that generate paths not too
far from the optimal ones.
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Figure 4. Structure of the chromosome

The crossover is implemented as a slicing crossover: after
selecting two parents in the current population, we random-
ly chose an allele position creating twice two paths subsets.
Then, we just exchange the two last subsets to create two
children. An example of crossover is given on figure 5.

N/
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u

Figure 5. Crossover operator

To mutate a chromosome, we randomly select an allele po-
sition and generate a new path for the Origin-Destination
pair selected by the same process as for generating the initial
population. An example, of mutation is given on figure 6.

4.3 Results

To validate our algorithm, we used a toy network for which
we knew a trivial traffic assignment solution (this network is
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Figure 6. Mutation operator

drawn on figure 7). All the nodes on the first diagonal (upper-
left to lower-right) are airports, all nodes on the other diagonal
are beacons.

All airports in the upper left corner generate a traffic flow
which must be routed to the symmetrical airport (relative to
the center of the web) in the lower right corner. Respectively,
each airport in this corner generates a flow that must be rout-
ed to the symmetrical airport in the upper left corner. Face to
face flows on the same link are forbidden and link capacity is
very limited, in order to prevent two flows from being routed
on the same link.
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Figure 7. Test network

The parameters for the simulation were:
Population size: 400
Number of generations: 300
Probability of crossover: 0.6
Probability of mutation: 0.1
The evolution of best-ever chromosome fitness and aver-
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age chromosome fitness is displayed in figure 8: an optimal
solution is found at generation 180.
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Figure 8. Fitness evolution

The solution is displayed in figure 9. It is clearly a cor-
rect solution (there were many other solutions with the same
fitness: the direction of planes on each link can be either clock-
wise or counter clockwise). It must be noted that, even if this
solution is trivial to find for a human being because of the
symmetries of the problem, it remains as difficult as any oth-
er problem for our algorithm.

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

2000 4000 6000 8000 10000

Figure 9. Traffic assignment result

The algorithm was then tested on more realistic networks
(too large to be presented here) and gave also good results;
moreover, we were not able to find a better traffic assignment
by hand, which is a good presomption of a correct behavior
of the algorithm.
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5 Conclusion

This study shows how Genetic Algorithms are suitable to
solve the traffic assignment problem with no segmented flows.
We now consider this part of our work as completed. It is al-
ready an interesting result that can be used to build tools to
help viewing and assigning flows.

But we are focusing now on mixing our two algorithms:
the one described in [5] which does a sectoring of space given
assigned paths for each OD flow, and this one which, given a
sectoring, assigns paths.

Building a single algorithm able to do an optimal sector-
ing and flow assignment in one step, is a difficult, useful and
interesting challenge.
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