77,72, 1-10 (??)

© ?? Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Neural nets trained by genetic algorithms for collision avoidance

NICOLAS DURAND, JEAN-MARC ALLIOT

durand@recherche.enac.fr, alliot@recherche.enac.fr
Centre d’Etudes de la Navigation Arienne

FREDERIC MEDIONI
Centre de Mathématiques Appliquées de I’Ecole Polytechnique

Received ?%; Revised 29

Abstract. As air traffic keeps increasing, many research programs focus on collision avoidance tech-
niques. For short or medium term avoidance, new headings have to be computed almost on the spot,
and feed forward neural nets are susceptible to find solutions in a much shorter amount of time than
classical avoidance algorithms (A*, stochastic optimization, etc.) In this article, we show that a neural
network can be built with unsupervised learning to compute nearly optimal trajectories to solve two
aircraft conflicts with the highest reliability, while computing headings in a few milliseconds.

Keywords:

1. Air traffic control (ATC) and collision
avoidance

As air traffic keeps increasing, the ATC system
overload becomes a serious concern. For the last
twenty years different approaches have been tried
and many solutions proposed, originating with the
AERA-IT and AERA-III projects [17, 15, 14]. In
a few words, all theses solutions are between the
two following extreme positions:

On the one hand, we can imagine an ATC sys-
tem where each aircraft would follow its planned
trajectory with a perfect accuracy. With such a
system, no reactive system would be needed as
conflicts ! could be solved before aircraft take off.
This solution is close to the ARC-2000 hypothesis,
which has been investigated by the Eurocontrol
Experimental Center [12].

On the other hand, there could be an ATC sys-
tem where trajectories are not planned. Each air-

Air Traffic Control, Collision Avoidance, Neural Networks, Genetic Algorithms

craft flies its own way, and all collisions are to be
avoided by reactive systems. Each aircraft would
be in charge of its own safety. This could be called
a completely free flight system. The free flight
hypothesis is currently seriously considered for all
aircraft flying “high enough”.

Of course, no ATC system will ever totally
rely on only one of these two hypothesis. It
is quite easy to understand why. A completely
planned ATC is impossible, as no one can guar-
antee that every trajectory would be perfectly fol-
lowed; there are many parameters that can not be
perfectly forecasted such as meteorological condi-
tions (storms, winds, etc.), breakdowns in aircraft
motor, flaps or other problems (closing of landing
runaway on airports, etc.). On the other hand, a
completely reactive system looks difficult to han-
dle; it would only perform local optimizations for
trajectories. Moreover, in the vicinity of depart-
ing and landing areas, the density of aircraft is

so high that trajectories generated by this system
could soon become Brownian movements.

An ATC system can be represented by a set of
filters, or shells. A classical view of the shells in
an ATC system could be:

1. As many aircraft are simultaneously present
in the sky, a single controller is not able to
manage all of them. So, airspace is divided
into sectors, each of them being assigned to a
controller. Airspace design aims at designing
the air network and the associated sectoring.

2. Air Traffic Flow Management (ATFM)
(strategic planning, a few hours ahead): With
the increasing traffic, many pilots choose
the same routes, generating many conflicts
over the beacons inducing overloaded sectors.
Traffic assignment aims at changing aircraft
routes to reduce sector congestion, conflicts,
and coordinations.

3. The coordination planning (a few minutes be-
fore entering in the sector) guarantees that
each new aircraft entering a control sector
does not overload the sector.

4. Tactical control in ATC centers (up to 20 min-
utes ahead): At this level, controllers solve
conflicts between aircraft.

5. Collision avoidance systems (a few minutes
before collision): This shell is activated only
when the previous one has failed. It is not
supposed to be activated in normal situations.

Each level has to limit and organize the traffic
it passes to the next level, so that this one will
never be overloaded.

In this paper, we present a problem solver that
can handle the collision avoidance problem (level
5 filter) with reactive techniques. This problem
solver is based on a neural network, which is built
by a genetic algorithm. Building neural networks
with GA has already been done. Application quite
similar can be found in the literature such as car
parking [16], or chromatography [8].

2. Existing reactive techniques

The most well known concept on reactive colli-
sion avoidance is certainly the ACAS2 concept.
It is already implemented in its two first versions
(TCAS-I and TCAS-II) and only implements ma-

noeuvre in the vertical plane (extension to the hor-
izontal plane [1] were inconclusive). It is a very
short term collision avoidance system (less than
60 seconds). It should only be thought as the last
security filter of an ATC system. Using TCAS
to control aircraft would probably end in serious
problems. The TCAS algorithm is based on the
application of a sequence of filtering rules, which
give the pilot a resolution advice.

Another simple technique has been investigated
by [10]. The idea is to consider each aircraft as
positive electric charges, while the destination of
the aircraft is a negative charge. Each aircraft cre-
ates a repulsive force proportional to the inverse of
the square of the distance, while the destination
behaves like an attractor. This technique has a
serious drawback. Symmetries can not be broken.
This problem was solved by [20, 19, 18]. The gen-
eral idea is to add non symmetrical force: a force
which has the direction of the repulsive force +90
degrees, and a module which is a small fraction
of the module of the repulsive force is added to
the repulsive force. This system solves the sym-
metrical problem. However, there are still some
drawbacks: the different parameters of the attrac-
tive and repulsive forces are arbitrarily set, and it
is unclear to define how to find optimal values.
Moreover, the shape itself of the forces is also ar-
bitrarily set. But the main problem of this system
is that it forces aircraft to modify their headings,
but also their speeds. Unfortunately, the range
of available speeds is very limited for aircraft fly-
ing at their requested flight level. Moreover, it is
technically very difficult to change aircraft speed
with a continuous command because it can dam-
age aircraft engines.

Our system only allows heading modification
and solves very complex two aircraft conflict, with
almost optimal trajectories. Moreover, the system
is very fast, as soon as the neural network has been
built.

3. Mathematical complexity

If we consider the two aircraft problem, it can be
proved, using the residue theorem [6], that the
minimized function is convex, but the set of con-
flict free trajectories is not. It is not even con-
nected. If trajectories don’t loop, the set of con-

flict free trajectories has two connected compo-
nents. In one of the two sets, one of the aircraft
always lets the other one on its right side, whereas
in the other set, it lets it on its left side. For a
conflict involving n aircraft there may be 2" con-
nected components in the free trajectory space
which strongly suggests that any method which
requires exploring every connected component is
NP.

In each connected component, Optimal Control
theory can be used to optimize aircraft trajecto-
ries. However, for the collision avoidance prob-
lem, an improved version of the Pontriaguine max-
imum principle is required to take the separation
constraint into account. Durand detailed in [6]
the conflict resolution problem using the Optimal
Command theory [3, 11]. This led to the following
conclusions:

1. if aircraft speed is not constrained, an ana-
lytical solution can be found (however, this
hypothesis on aircraft speed is not realistic).

2. if aircraft speed is constrained, at the opti-
mum, as long as the separation constraint
is not saturated, aircraft fly in straight line.
When saturating the constraint, aircraft start
turning, and as soon as the separation con-
straint is freed, aircraft fly straight again.

3. when moving only one aircraft, trajectories
are also regular and do not include discontin-
uous points. Moreover, the length of the tra-
jectory increases when the angle of incidence
between the two aircraft decreases, the speed
ratio gets close to 1, or aircraft are closer to
the conflict point when the resolution starts.

For a conflict involving 2 aircraft, local opti-
mization tools such as LANCELOT? [4] can
solve the collision avoidance problem. However
LANCELQT is quite slow and can not be used for
a real time application. For more than 2 aircraft,
LANCELOT can not be used and other techniques
have to be investigated [7, 5].

4. Modeling the problem

The problem we want to solve is the following. An
aircraft flying at a constant speed detects another
aircraft flying at the same altitude (more or less

7?73

1000 feet) in a 20 nautical miles diameter disk. We
want to build a neural network that modifies the
heading of this aircraft when there is a conflict.
The heading must not be changed of more than
45 degrees per 15 seconds for operational reasons.
The other aircraft is supposed to have the same
embarked system so that it also detects the first
aircraft and reacts using the same neural network
with different inputs.

The system uses an on board radar to detect
other aircraft. Consequently, all the inputs of the
neural network must be given by the on board
radar information.

The horizontal separation standard is noted ny,
and is equal to 4 NM.

5. Using a neural network

Conflict avoidance takes place on a time period
of length ¢;. The position of an aircraft at time
t = 0 is called its initial position, its position at
time t = ¢ is called its final position, or its des-
tination. In our problem, it seems clear that if
no conflict occurs, no neural network is needed to
solve it. Consequently, at each time step, we first
check if both aircraft can connect their destination
without changing their headings and without gen-
erating conflicts. In that case, we do not modify
aircraft headings.

5.1. The inputs

9 inputs are used by the neural network (see figure
1). Animportant data to define these inputs is the
heading an aircraft should follow to go directly
from its current position to its destination. This
heading is called the direct heading. Aircraft are
noted a;, for i € {1,2}. The speed of aircraft
a; is noted v;, its heading is noted h;, its direct
heading is noted h¢. The difference between these
two heading is a; = h;.i — h;. The relative speed of
aircraft a; with respect to aircraft a; is noted v; ;.
We describe the inputs used by the neural network
that modifies the trajectory of aircraft a;:

e sina; and cosa; ; we use both sina; and
cosay to represent oy, to maintain continu-
ity of the function when planes cross the 360
degrees boundary

4 37

va—v1
v1

* 5, with 6z = max(60; [|d — np|, 1), where d is
the distance between the two aircraft and is
expressed, as well as ny, in nautical miles.
vma:izmi" where Vmae and vmin, are the
bounds of the possible values of the speed of
the aircraft.

e sin+y, and cos+ys, where 5 = hy — h{.

. %, where 8 is the converging angle of the
trajectories (in degrees).

¢ A bias set to 1.

5.2. The neural network structure

The neural network structure used is as simple
as possible. A 3 layers network is used (see fig-
ure 2) and returns a heading change of 45 degrees
maximum (for a time step of 15 seconds). The
activation function used is the following:

1
1+e5

act(s) =

The first layer has the 8 inputs described above
plus the bias. The second layer holds 25 units,
while the third layer holds the output unit*.

5.8. Learning the neural network weights

Classical back propagation of gradient can not be
used in our case because conflict free trajectories
are not known in every configuration. They could
be calculated for conflicts involving n = 2 air-
craft, but the problem is not solvable for n > 2.
As we plan to extend our system to more than
two aircraft, we decided to use unsupervised learn-
ing with GA. However, we compare the results of
our network with optimal trajectories computed
by LANCELOT to validate our hypothesis.

6. Genetic algorithms

Figure 3 describes the main steps® of GAs that
are used in this paper: first the problem is coded
and a population of points in the state space is
randomly generated. Then, we compute for each
population element the value of the function to op-
timize, which is called fitness. Then the selection
process reproduces elements according to their fit-

d(al, a2) >
B
Y2
al ’l_fl
s
d>

Fig. 1. The neural network inputs of aircraft 1.

A
Ccos Y2 .',él;

7N
AN\,
-\\

Fig. 2. The neural network structure.

ness. Afterwards, some elements of the population
are picked at random by pairs. A crossover oper-
ator is applied to each pair and the two parents
are replaced by the two children generated by the
crossover. In the last step, some of the remaining
elements are picked at random again, and a mu-
tation operator is applied, to slightly modify their
structure. At this step a new population has been
created and we apply the process again in an iter-
ative way. The different steps are detailed in the
following.

POPULATION ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Génération k

PROBABILITE Pm PROBABILITE Pc

EVALUATION

POPULATION ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

Génération k+1

Fig. 3. GA principle

6.1. Coding the problem

Here, each neural network is coded by a matrix
of real numbers that contains the weights of the
neural network.

6.2. Computing the fitness

One of the main issues is to know how to com-
pute the fitness of a chromosome. The constrained
problem to solve takes the following criteria into
account:

¢ Aircraft trajectories must be conflict free.

¢ Delay due to deviation must be as low as pos-
sible.

¢ The fitness of a network which leads to tra-
jectories that do not respect the separation
constraints should always be lower than the
fitness of a network that leads to trajectories
that respect these constraints.

To compute the fitness, a panel of N differ-
ent conflict configurations® is created randomly (cf
section 6.6).

For these N configurations, we define C' as the
total number of time steps for which one separa-
tion constraint is violated and p as the quadratic
mean of delays. Fitness is defined by:

If C # 0:

?7?)

IfC =0:

fa:1+—1+u (2)

6.3. Selection

”Stochastic Remainder Without Replacement” [9]
is used for selection, along with ranking. After the
raw fitness f] of the n elements of the population
is computed, these fitnesses are scaled; the ele-
ments of the population are ranked, according to
their fitness: the best element gets rank 1, and
the worst one gets rank n. The rank of an ele-
ment is noted r;. The scaled fitness is defined by:
J{ = ™. Each element is reproduced [p;] times
in the new population, with p; = n x f;/>_; f;.
Then we compute r; = p; — |p;|, and the popula-
tion is randomly completed by choosing elements
with the probability r;/ 3 ;r;. Number of ele-
ments is 500.

6.4. Crossover

The arithmetic crossover is used: 2 parents
are recombined by choosing randomly o €
[-0.5,1.5] and creating child 1 (resp child 2)
as the barycentre of some randomly chosen
weight of (parent,, a) (resp (parenti,1— a)) and
(parents,1 — a) (resp (parents,a)). Crossover
probability is 60%.

6.5. Mutation

The mutation operator adds a Gaussian noise to
one of the weights of the neural network. The
mutation probability is set to 15%.

6.6. The learning examples

The learning set contains N = 50 conflict config-
urations. These configurations are generated ran-
domly and remain unchanged throughout learning
(fixed learning test). The position of an aircraft
at time ¢t = 0 is its initial position; its position at
time ¢ = ¢y, if it is not deviated, is called its final
position. The configurations generated are such
that:

6 137

¢ The distance between two aircraft at time t =
0 is equal to an alert distance noted d,.

e If aircraft are not deviated, a conflict occurs
between ¢ = 0 and ¢ = ¢;, but aircraft are
separated again at time ¢ = t;.

Two configurations are considered to be equal if
it is possible to get from one to the other through
a translation or a rotation (the inputs of the neu-
ral network use only relative positions of aircraft).
Configurations are generated in order to repre-
sent as much as possible all relative positions and
all relative headings at the beginning of the con-
flict. The speed of the aircraft ranges between
Vmin = 300 kts and v, = 500 kts.

7. Numerical results
7.1. Preliminary results

To evaluate the performance of the neural net-
work, we have tested it on a large number (10000)
of non learned conflict configurations. These con-
flict configurations are generated randomly. The
neural network generated conflict free trajectories
for 9612 out of 10000 configurations (4 % failure).
In most cases, the violation of the separation con-
straint is not very important: for 152 configura-
tions, the minimal distance between the two air-
craft is higher than 3.75 NM, it is between 3 and
3.75 NM for 195 configurations, and never gets
below 2 NM. The mean delay of aircraft (on the
configurations for which conflict free trajectories
are found) is 5.1 seconds. The delay of aircraft
is lower than 10 seconds for 7802 configurations,
higher than 30 seconds for only 10 configurations,
and never higher than 1 minute. On the average,
an aircraft is in conflict every 30 minutes. So, the
average delay is 0.3%.

7.2. Improving results

The reliability of the neural network that learned
on a fixed learning test is quite good (4 % failure),
but is not perfect. To improve it we have used a
renewed learning set, along with a different way
of computing the fitness of a network.

The conflict configurations of the learning set
are renewed at each generation of the genetic al-

gorithm. They are replaced by other conflict con-
figurations, randomly generated.

A neural network, if it survives for several gen-
erations, has been confronted to different learn-
ing sets. These different learning sets are used to
compute the network fitness. We modify the defi-
nitions of C' and p. We define C’, the mean value,
on the different learning sets to which the neural
network has been confronted, of the total number
of time steps on which aircraft are not separated
(for the N conflict configurations of each learn-
ing set), and g’ the mean value on these different
learning sets of the quadratic mean value of the
sum of the delays of the two aircraft on the NV
conflict configurations of each learning set.

We also use a reliability factor, adapted of a
concept used to train a program designed to play
Othello games [2]. This program was evaluated
by counting the number of victories against a ref-
erence program. The reliability of a program de-
pends on this number, but also on the number of
games already played. A program that won 46
games out of 48 may be more reliable than one
that won 6 games out of 6.

Let us suppose that the probability that the
program wins a game is p. The probability that
it wins m games out of n is then:

P = (1)oma -)

Let us suppose that the program has won m games
out of n. It can be then shown that for py € [0, 1],
p is higher than a certain value pp, np, with prob-
ability py, with the following implicit definition of

Pm,n,p;*

1
Ry Zi
A Ppmm)ip= L

m,n,pf

Let ns be the number of successive learning sets
for which the network generated only conflict free
trajectories. We define s, as the reliability factor
of the network:

Sr = Pn,,ns.ps

with py = 0.95. The different values of s, for
the different possible values of ny (here 1 to 1000,
which is the maximal number of generation, and
thus of learning sets) are computed once before
the genetic algorithm is run.

The reliability factor s, of a network is used to
compute its fitness:

If C' # 0:

1000

fa:1+c, (5)

IfC' =0:

1000
fa=1000+ 5.3 =5 (6)

7.3. Results with the renewed learning set

Results are excellent. The new network has been
tested on 10000 configurations, and generated con-
flict free trajectories for all of them. In terms of
delays, the results are a little less satisfying: the
mean delay is then 7.5 seconds (it is 5.1 seconds
for the fixed learning set), the delay of aircraft is
lower than 10 seconds for 6838 configurations, be-
tween 10 and 30 seconds for 3019 configurations,
between 30 seconds and 1 minute for 132 config-
urations. The delays are higher than 1 minute in
18 cases, but never higher than 2 minutes.

So, there is a minimal loss of performance re-
garding delays, but separation is now enforced.
Neural networks learned with renewed learning
sets are much better than the ones learned with a
fixed set.

7.4. Comparison with LANCELOT

Optimal solutions to the different configurations
are calculated using gradient method such as
LANCELOT. LANCELOQOT has the great advan-
tage to find the optimal solution to our prob-
lems but requires much more time (one hour on
HP720). Controlling aircraft in real time with
this technique is not possible. However, it is in-
teresting to compare optimal solutions found by
LANCELQT to solutions computed by the neural
network.

The configurations used to compare the neural
network to optimal solutions are not learned con-
figurations. For each solution, we give the mean
lengthening of the trajectories in percentage:

7T

KK

Fig. 4. Neural network solution (left), optimal solution
(right).

PO

Fig. 5. Neural network solution (left), optimal solution
(right).

¢ Figure 4 gives an example of conflict at 90
degrees in which aircraft have the same speed.
Neural network (1.08%) and optimal solution
(0.26%) are similar. The NN solution mean
lengthening is worse than the optimal solution
lengthening.

¢ Figure 5 gives an example of a 15 degrees con-
flict where aircraft have the same speed. Such
a conflict is particularly difficult to solve. So-
lutions are different, but for such a difficult
conflict, the neural network (2.30%) gives a

8 137

T A

Fig. 6. Neural network solution (left), optimal solution
(right).

Fig. 7. Neural network solution (left), optimal solution
(right).

solution that is robust and quite as good as
the optimal solution (2.23%). This conflict is
the most difficult conflict to solve (in the 5 ex-
amples presented). It is interesting to see that
the difference of lengthening is the smallest.

R ———

Fig. 8. Neural network solution (down), optimal solution
(up).

¢ Figure 6 gives an example of aircraft at differ-
ent speeds (400 and 500 knots) with crossing
at a small angle (30 degrees). The neural net-
work solution (1.32%) appears very similar to
the optimal solution (0.28%) but it is less ef-
ficient.

¢ Figure 7 gives an example of aircraft crossing
on the same route. This problem is easy to
solve and solutions are similar. The NN so-
lution (1.18%) is robust but worse than the
optimal solution (0.25%).

e Figure 8 gives an example of aircraft flying
on parallel routes at different speeds. This
problem is easy to solve. Solutions are similar.
The NN solution (1.02%) is robust but worse
than the optimal solution (0.21%).

These 5 examples show that, if solutions are ob-
viously less optimal, the loss of optimality is not
significant (the delay induced by the neural net-
work is always less than 4 times the minimal delay
found with LANCELOT, which is generally very
small). Tests done on non-learned situations gave
results as good as tests done on learned configu-
rations.

8. Conflicts involving 3 aircraft

We wanted to test the possibility of extending res-
olution to more than 2 aircraft. The three follow-

ing techniques to solve conflicts involving 3 air-
craft are used:

Closest intruder: a neural network such as de-
scribed in section 5 is used. At each time step,
the inputs are computed by considering only
the closest of the two other aircraft. Aircraft
take a direct heading towards their final posi-
tion as soon as all aircraft can do it without
conflict.

Threatening intruder: at each time step, each
aircraft computes its direct trajectory to its
destination and finds the closest aircraft that
would be in conflict if they all follow direct
routes. Inputs of the network are then com-
puted regarding only this aircraft. An aircraft
takes a direct heading towards its destination
as soon as it is not in conflict if all aircraft fly
a direct route.

two intruders: a larger neural net is used, which
takes 15 inputs. It uses the same first 9 inputs
as in section 5, but 6 more inputs are com-
puted regarding the second aircraft in conflict
(they are similar to the ones described in sec-
tion 5). The hidden layer is extended to 30
neurons. An aircraft takes a direct heading
towards its final position as soon as all air-
craft can do it without conflict.

These three techniques have been used, with a
fixed and a renewed learning set. With the fixed
learning set, results are good, for the three tech-
niques on learned configurations: conflict free tra-
jectories are generated for all learned configura-
tions, delays are reasonable, though more impor-
tant than for two aircraft (mean delays around
30 seconds for the three techniques, with a light
advantage for the closest intruder technique). Sta-
tistical results are quite bad on non learned con-
figurations (10 % failure).

Results with the renewed learning set are not
totally satisfying either:

Closest intruder: conflict free trajectories are
generated for 9983 out of the 10000 non
learned configurations (0,2% failure). But de-
lays are large: 53 seconds mean delay, between
3 and 10 minutes for 296 configurations, larger
than 10 minutes for 15 configurations.

7?79

Threatening intruder: the failure rate is less
than 0.4%, but results are better regarding de-
lays: 40 seconds mean delay, delay exceeding
3 minutes for 144 configurations, never larger
than 10 minutes.

Two intruders: the failure rate is very low:
0.06%, but delays are even larger: they exceed
3 minutes for 800 configurations, and exceed
10 minutes for 54 configurations.

9. Conclusion

Using a simple neural network to solve a conflict
between 2 aircraft gives very good results. The
neural network can be easily learned by a genetic
algorithm without knowing the optimal solutions.
Robustness of the NN can be improved if new con-
flict configurations are used at each generation of
the genetic algorithm.

Extending the problem to conflicts involving
more then 2 aircraft is much more difficult. The
closest intruder and closest threatening intruder
techniques are advantageous because they can be
extended to more than 3 aircraft. But they seem
less robust to non learned configurations than the
two intruders technique. The latter gives good
results regarding the robustness to non learned
conflicts but delays are quite important. Further-
more, extension to more than 3 aircraft would
make the size of the NN increase and the learning
more difficult.

These results are not surprising; as many reac-
tive techniques, NN must be considered as an in-
termediate filter between the TCAS and tactical
resolution techniques. As such, they will operate
on simple (mainly 2 aircraft), short/medium term
conflicts. For such applications, they are an excel-
lent system, as they combine very fast, real time,
computation of new headings and a great reliabil-
ity and efficiency.

Notes

1. 2 aircraft are said to be in conflict if their altitude differ-
ence is less than 1000 feet (305 meters) and the horizon-
tal distance between them is less than 8 nautical miles
(14800 meters). These two distances are respectively
called vertical and horizontal standard separation

2. Airborne Collision Avoidance System

10 99

3. Large And Nonlinearly Constrained Extended La-
grangian Optimization Techniques

4. Different number of units were tried. With less than 25
units, results were not satisfactory. With more than 25
units, results show no evidence of improvements, while
training times were longer.

5. We use classical Genetic Algorithms and Evolutionary
Computation principles such as described in the litera-
ture [9, 13].

6. N represents the number of conflict configurations on
which each element of the population is tested while n
represents the number of elements in the population.

7. The GA is not very sensitive to the exact form of the
fitness function. The one choosen is both simple and
efficient.

References

1. TCAS-III collision avoidance algorithms version 3.
Technical report, The MITRE Corporation, Novem-
ber 1990.

2. J.M. Alliot. A genetic algorithm to improve an othello
program. In Artificial Evolution 95. Springer, 1995.

3. Bryson and Ho. Applied Optimal Control. Hemi-
sphere Publishing Corporation, New York, 1975.

4. A.R. Conn, Nick Gould, and Ph. L. Toint. A com-
prehensive description of LANCELOT. Technical re-
port, IBM T.J. Watson research center, 1992. Report
91/10.

5. N. Durand and J.M Alliot. Optimal Resolution of En
Route Conflicts. In 1 ST U.S.A/EUROPE ATM R
& D Seminar, Mai 1997.

6. Nicolas Durand. Optimisation de Trajectoires pour
la Résolution de Conflits en Route. PhD the-
sis, ENSEEIHT, Institut National Polytechnique de
Toulouse, 1996.

7. Nicolas Durand, J. M. Alliot, and Joseph Noailles.
Automatic aircraft conflict resolution using genetic
algorithms. In Proceedings of the Symposium on Ap-
plied Computing, Philadelphia. ACM, 1996.

8. Alessandro Fadda. Utilisation de techniques neuro-
genetiques pour la resolution de problemes inverses.
PhD thesis, Ecole Polytechnique de Paris, 1998.

9. David Goldberg. Genetic Algorithms. Addison Wes-
ley, 1989. ISBN: 0-201-15767-5.

10. H. Gruber. Comparaison de diverses méthodes
d’intelligence artificielle pour la résolution de conflit
en contrdle de trafic aérien. Rapport de stage, Centre
d’Etudes de la Navigation Aérienne, 1992.

11. R. F. Hartl, S. P. Sethi, and R. G. Vickson. A survey
ot the maximum principles for optimal control prob-
lems with state constraints. STAM Review, 1995.

12. Fred Krella et al. Arc 2000 scenario (version 4.3).
Technical report, Eurocontrol, April 1989.

13. Z. Michalewicz. Genetic algorithms+data struc-
tures=evolution programs. Springer-Verlag, 1992.
ISBN: 0-387-55387-.

14. W.P. Niedringhaus. Automated planning function for
AERA3: Manoeuver Option Manager. Technical re-
port, FAA, 1989. DOT/FAA/DS-89/21.

15. W.P. Niedringhaus. A mathematical formulation for
planning automated aircraft separation for AERA3.
Technical report, FAA, 1989. DOT/FAA/DS-89/20.

16. Marc Schoenauer, Edmund Ronald, and Sylvain
Damour. Evolving nets for control. Technical report,
Ecole Polytechnique, 1993.

17. E. M. Schuster, F. R. Petroski, R. K. Sciambi, and
M. MC Stokrp. AERA 2 functional design and
performance description. Technical report, MITRE,
September 1983. MtR-83W136.

18. Karim Zeghal. A comparison of different approaches
based on force fields for coordination among multiple
mobile. In IEEE International Conference on Intel-
ligent Robotic System (IROS, Mai 1993.

19. Karim Zeghal. A Reactive Approach for Distributed
Air Traffic Control. In International Conference on
Artificial Intelligence & Ezpert Systems, Mai 1993.

20. Karim Zeghal. Vers une théorie de la coordination
d’actions, application & la navigation aérienne. PhD
thesis, Universite Paris VI, 1994.

Nicolas Durand graduated from the Ecole Polytech-
nique de Paris in 1990 and from the Ecole Nationale
de PAviation Civile (ENAC) in 1992. He has been a
design engineer at the Centre d’Etudes de la Naviga-
tion Aérienne (CENA) since 1992 and has completed
a Ph.D. in computer science on “Computing Optimal
Trajectories for Conflict Resolution”.

Jean-Marc Alliot graduated from the Ecole Poly-
technique de Paris in 1986 and from the Ecole Na-
tionale de I’Aviation Civile (ENAC) in 1990. He also
holds a Ph.D. in computer science (1992). He is cur-
rently in charge of the global optimization laboratory
of CENA and ENAC in Toulouse.

Frédéric Médioni graduated from the Ecole Poly-
technique de Paris in 1992 and from the Ecole Na-
tionale de I’Aviation Civile (ENAC) in 1994. He is
currently completing a Ph.D. in computer science.

