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Abstract

Conflict probes will be important components of air
traffic control tools in the next years. They appear in al-
most every project (CINCAT, ERATO, HIPS, PHARE, and
so on). To be useful, they have to fulfill two goals : relia-
bility (they have to detect all conflicts) and efficiency (they
must minimize the number of false alarms). Conflict probes
rely on trajectory prediction, and their reliability and effi-
ciency highly depend on the accuracy of trajectory predic-
tion. In this paper, we present a quick mathematical in-
sight of the influence of ground speed errors on trajectory
prediction, results of arithmetic simulations on real traffic
both on ground and vertical speed errors, and a statistical
analysis of these results to model the influence of vertical
and ground speed errors on conflict probe.

1 A mathematical overview

In this section, we present quickly some mathematical
results regarding two aircraft conflict.

1.1 Two aircraft conflict at constant speed
Figure[1 show a classical two aircraft conflict. Aircraft
on the lower segment fly at spe@g, and aircraft on the

upper segment fly at spe€g. The angle of incidence is.

We will use the auxiliary variables = vy /vy, and D
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Figure 1: Two aircraft conflict

upper segment will contain conflicting aircraft with this
one. Let’'s assume that an aircraftis at distanceé, of the
crossing point. Then we have (with a classical orthonormal
referential):

T, = wunt—14

y1 = 0

x9 = cos(a)(vat — l2)
ya = sin(a)(le — vat)

If the two aircraft are to be in conflict, there must exist
such that the following inequality is satisfied :

(z1 — 22)* + (y1 — y2)* < D?

This is a second degree inequalitytinWe notice that for
t — 400 0Ort — —oo, the inequality is not satisfied. So, it
will only be satisfied if the equation:

(x1 — Cﬂ2)2 + (y1 — y2)2 —-D?*=0

the separation standard. Let's suppose that we have amgas at least one root. If the discriminant of the above equa-

aircraft p; on the lower segment at a distaneof the
crossing point. We want to know which interval on the
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tion
A = D?(v? —2v1v5 cos(a) +v3) —sin(a)?(lavy — l1vs)?

is negative, then aircrafi; will never be in conflict with
py; if the discriminant is positive, they will be in conflict
during|ty, t2] wheret; andt, are the roots of the equation.



The discriminant is itself a polynomial of degree 24n a
Thus, the distancels which satisfyA >= 0 belong to a
single interval, and the extremal points of the interval are 149
the roots of the equatioA = 0

120
v D¢1+<%>272<:§—§>cos<a> .
ooyt sin(cv) @ 100
s \/1+(%)272(%)cos(a)
ro = l1——-D - (2) 80
vy sin(a)

However, we are only interested in the length of the seg- 60
ment, which is the difference between the two roots. We do

not take into account the degenerate cases0 (takeover) 40
anda = 7 (facing aircraft). It comes:

L =92D \/1 + (v2/v1)2 — 2(v2/v1)cos(a) 20

sin(a) 0.6 0.8 1 1.2 1.4 '

We taker = vy /v; as the ratio of speed and we express the
length of the segment in number of separation standard: Figure 2: Two aircraft conflict

L _ f(ra) = 2\/1+7’2 — 2r cos(a)

will detect roughly f(r, &) conflicts; in a given time pe-
riod T, ny = T x (%) aircraft will pass on the lower
The function doesn’t depend dn (it could have been ex-  segment and the total number of conflicts detected by air-
pected) and the minimum is reached foe cos(«), and craft on the lower segment will be, f(r, a). During the

we havef(cos(a),«) = 2. This is independent ot and same time period, aircraft on the upper segment will detect
perfectly normal: it represents aircraft at a distance  n2f(%, ) conflicts. These two numbers have to be equal,

—D < d < D of the crossing point when aircraf is s0:ny f(r,a) = nof (%, ), of f(r,a) = Z—’;’f(%,a). By

sin(a)

exactly at the crossing point. replacingn, andng by their values:

We represent on figurfgl 2 a contour plot of the above
function. Ther axis isr (the ratio ofvy /v1); we use values f(ra) = T x (%)f(} o) = %f(} o) = rf(l o)
of r ranging from 0.5 to 1.5. Thg axis is the angle of in- ’ Tx (%) r’ vt r’

cidencex in degrees, from 20 degrees to 150 degrees. We

do not represent values above 150 degrees or below 20 de4.2 Two aircraft conflict with uncertainties

grees, as they exhibit pathological behavior. These curves

are not exactly new, as quite similar ones already appeared suppose now that speeds are not exactly known, but
in documents describing the Gentle Strict (GS) algorithm 4t they belong to a given interval, with a percentage of

of the AREA project[NFC 83,[Nie89h[ Nie89a]! error. We have then:
The darkest part of the contour plot represents segment
lengths ranging from 2 to 2.5 separation standard. Each 21 = vi(l+e)t—1
line represent one half separation standard more. - 0
One should naively expect the function to be symmetri- o=
cal with f(r,a) = f(1/r,«), as the problem looks sym- xy = cos(a)(va(l+e2)t —1y)
metrical: aircraft on the upper segment should “see” the y2 = sin(a)(la —v2(1 + e2)t)

same number of conflicts with aircraft on the lower seg-

ment than aircraft on the lower segment with aircraft on the By taking the following variable:r = 22, 1 = % and

upper segment. Actually, we have(l,a) = Lf(r,a). k = +f¢2 e just have to substitute in equati@s 1 Ehd 2

! R ;o Tte;’
This can be intuitively understood on a simple example.  to get trelle new extremal points of the segment:

Let's suppose that aircraft on the upper and the lower
segment are equally spaced by exactly one separation stan- 1 V1 +72k% — 27k cos(a)
dard (maximal rate). Each aircraft on the lower segment D ter + sin(a)




V/1+12k% — 27k cos(a)
sin(a)

T2

lkr —

If we suppose that both; ande,; belongs to the same
interval[—e, e], we would like to plot the length of the seg-
ment as a function of:

. T2
pin,_ |5

Tfe'I—e

max - | —
1-c 1+e; LD ke

T¥e’T—e

D(a,l,r,e):

ke[

Let's consider the maximization of, (k). It is a con-
strained maximization problem, so the extremum will be
either on the hull of the convex (here at one of the points
};g or }sz) or at an extremal point in the convex. This last
point will be found by solving the equation:

on
ok

kr? —r cos(a)

=Ir
sina /1 + k272 —2kr cos(a)

=0

This equation has only one root in

~ —lV/1—sin’a sin® a4 (1 — ?sin® a) cos a

ky
r(1 —12sin? @)

and this root only exists when< ﬁ The second order

derivative is:
827”1 o
k2

r? sin(a)
(1+ k%272 —=2kr cos(a))

>0

3
2

We have also:

87‘1 1

%(k_o) o r(l_sinoz)

. ory 1
khjgo 87(k) = r( sina)

Then we can conclude that the extremum of the function
will never be reached inside the interval, but only at the
upper or lower bound. Then:

1+e
1 ril1=
> — : max [r—l} = (=)
sin « ke[dze, e D D
14e l—e
1 . ri| Tl(lfe) T1(1+e)
L< sina e {5} - ax{ D ' D
kelire 1=¢]

An extremely similar discussion arises from the minimiza-
tion of r5. The conclusion is:

1—e
1 T2
> — : min [T—Q} = (1+e)
sin « ke[dze, e D D
! , ra(H) ry(iz2)
l< — . {7] — c e
sin o ke[gilf}te] D min { D D
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Figure 3: percentage of additional conflicts (ral= m/4)

We can now plot the length of the segmémtx,l,r, e).
However, it is much more interesting here to represent the
ratio of the number of conflicts detected (which is propor-
tional to L) to the number of conflicts which would be de-
tected if there was no uncertainty. So we do plot the func-

. L(a,l,r,e) .
tion 77775y on flgureﬁz.

The z-axis is the uncertainty with values from 0 to
30%; they-axis isl, and is also the time to the crossing
point in minutes if we make the approximation that an air-
craft flies one separation standard in one minute; values
range from 3 to 10 minutes to the crossing point. We set
r = 1 anda = w/4. The darkest part (on the left) is the
zone where we have from 0 to 10% conflict more. Each
line crossed towards the lightest zone adds 10% of conflict.

For example, if we detect conflicts 5 minutes before the
crossing point, with an angle of convergence of 45 degrees,
a speed ratio of 1 and an uncertainty of 15%, we will detect
50% more conflicts than if uncertainty was O.

Notice that the time used is not the time before the start
of the conflict but before the crossing point is reached. The
difference is quite small for large values®fbut large for
small values ofx.

If we suppose that we detect conflicts far enough from
the crossing point (a reasonable assumption), the maxi-
mum ofry isry (11¢) and the minimum of is ’I”Q(%).

Then we have:




We can develop this equation:

L _ derl 1 140
D — 1-e2 sin(a)
14 (1—e)?r2 2(1-e)r cos(oz)+ 120
(1+e)? l+e
100
1+(1+e)2r2_2(1+e)rcos(a)
(l—e)2 1-e
80

It is interesting to notice that the second term doesn’t con-
tain [ and that for large values @f this function is equiv-

alent to3<Z}. For values ok not too large, we can write 60
the order 1 Taylor series i

40
\/1 + 72 —2r cos(a)

f)(a,r,l,e):4lre—|—2 n(a)
sin(a ‘
20 S ‘ ‘

and find back in the second term the length of the segment 0.6 0.8 1 1.2 1.4
whene = ( that was computed in the previous section. For
that case, the increase in the number of conflicts is: Figure 4:C(r, )

L(a,rle) L+ 27 sin(a) e

L(a,r,1,0) V1472 =27 cos(a) model shows that, to be able to detect conflicts soon and
= 1+C(r,a)le efficiently, we must be sure that the uncertainties on speed

are as small as possible, and certainly less than 5%.
This last expression is simple and interesting. The 1 rep-

resents the “standard” number of conflicts, and the second
term is the increase in percentage. Fidure 4 is a contour
plot of C(r,a) for r € [0.5,1.5] anda € [20, 150] de-
grees. The white zone correspondd 10 < C(r,a) < 2,

and each line crossed towards the darkest zone decrease® L
C(r,a) by 0.1. The general shape of the curve is not sur-
prising: for very small£ 0) or very high ¢ 180) values of The mathematical model makes lot of assumptions
«, conflicts are almost certain, so the percentage of “false (constant speeds for example), many of them being quite
alarms” remains small. Regarding the speed ratio, aircraft unrealistic. Moreover, we haven't taken into account the
having quite similar speeds are intuitively more prone to Vvertical plane. We are now going to try to find a statisti-
give false alarms than aircraft with clearly different speeds. cal model of the number of conflicts detected depending

2 A statistical analysis

Introduction

On a simple numerical example & 1, a = 30), we on the value of vertical and ground speed errors and of the
have: value of the anticipation (the time window used for conflict
L(ayrle) Lale detection).
L(a,m,1,0) — To get data for our statistical analysis, simulations were

wherel can be considered as the time in minutes to the Us€d. The following subsections describe the experimental

crossing point (with, again, the approximation that an air- Protocol.

craft fly one separation standard in one minute), arsl

the uncertainty. for very small values efle < 0.05, i.e. 2.2 The Air Traffic simulator

5%), the second term remains less than 1, even tigrto

10 minutes. However, for larger values @fthe function We used the OPAS[[DAB97, DABM97] simulator
looks like21 e, a direct proportionality té ande. (sometimes known as CATS) for simulations. It uses a

The last two curves (figurg] 3 afdl 4) are extremely in- tabulated model for aircraft performances: ground speed,
teresting. Acceptance of conflict probe systems dependsvertical speed, and fuel burn are functions of altitude, air-
highly on their efficiency, and this efficiency can be eval- craft type and flight segment (cruise, climb or descent.)
uated as the percentage of “false alarms”. The theoretical The main dataset for aircraft flight performance is the base



of aircraft data (BADA) performance summary tables de-
rived from the total energy model of EUROCONTROL.
69 different aircraft types are described. Synonym aircraft
are used to model the rest of the fleet. The Airbus A320
(EA32) is used as default aircraft.

Aircraft follow classical routes (from way-point to way-
point). The flight model is simple: an aircraft first climbs
up to its RFL, then remains leveled till its top of descent,
then descends to its destination.

Aircraft fly with a timestep that can be chosen at the
start of the simulation. The timestep is always chosen in
order to guarantee that two aircraft face to face flying at

500 kts could not cross without being closer than one stan-

Beacons,

Horizontal plane

T

t=1 t=4 t=5 =6

dard separation at at least one timestep. For most of our

simulation, we use &5s timestep.

Flight plans are data of the COURAGE system, an
archiving system of the operational French CAUTRA Air
Traffic Control system. We have been using initial flight
plans (without regulation), and we have used one of the
module of the OPAS simulator to give slots to aircraft.

2.3 Conflict detection

Trajectory prediction is doneach three minuteby a
simulation of a given duration inside the global simulation.
This duration is what we call thenticipation

We assume during each of these detection simulations
that there is an error about the aircraft future location be-

cause of ground and vertical speed prediction uncertainties.

Then, an aircraft is represented by a point at the ini-
tial time of the conflict detection window. But the point
becomes a line segment in the uncertainty direction (the
speed direction here, see figlife 5). The first point of the
line “flies” at the maximum possible speed, and the last
point at the minimum possible speed. These maximal and
minimal speeds depend of course on the uncertainty cho-
sen: for 5% uncertainty on ground speed, the first point
will fly at a speed ofl.05 v and the last point &t.95 v, if v
is the nominal speed of the aircraft.

When changing direction on a beacon, the heading of
the line segment "fastest point” changes as described on
figure[§.

To check the standard separation at timere compute

Vertical plane

Figure 5: Modeling of speed uncertainties (standard
routes).

HORIZONTAL PLANE

t=3 t=4
_53

VERTICAL PLANE

Figure 6: Modeling of speed uncertainties (direct routes).

tal plane and1000 ft under FL295 an@000 ft above (no
RVSM) in the vertical plane.

Conflicts detected can be merged: if a conflict is de-
tected a time,, and detected again three minutes later, the
two conflicts are only considered as one. We maintain a
hash table during the whole simulation to determine which

the distance between the two line segments modeling the qnfiicts are to be merged.

aircraft positions and compare it to the standard separation
at each timestep of the simulation.

In the vertical plane, we use a cylindrical modeling (fig-
ure[§). Each aircraft has a mean altitude, a maximal alti-
tude and a minimal altitude. To check if two aircraft are in
conflict, the minimal altitude of the higher aircraft is com-
pared to the maximal altitude of the lower aircraft. The
separation standard usedsiaautical miles in the horizon-

When using direct routes, the model is slightly modified
(see figurd J6) and much more simple. As aircraft never
change direction, the aircraft is, at the beginning of the
time window, a simple point, which becomes a line seg-
ment whose size grows with the uncertainty on speed. The
modeling in the vertical plane is identical to the one used
for standard routes.



tw eg €y Ny N, Estimate| SE Tstat | PValue
0] 0.00| 0.00| 1726| 2758 log(ag) | 5.068 0.0278| 182 0
4| 0.02|0.01| 2211| 4001 ay 0.917 0.0122 75 0
41 0.02| 0.40| 3323| 6264 as 10.78 0.1225 88 0
41 0.16| 0.01| 4501 13653 as 2.075 0.0444 47 0
41 0.16| 0.40| 6006| 17847 R? = 0.946689
12 | 0.02] 0.01| 2937 | 6474
12 | 0.16 | 0.40 | 14216 | 68200 Table 2:N = No + ag t3' (14 e4)* (1+€,)%

Table 1: Results of simulations . _
We can then use a linear regression on all our data samples.

These results are summarized in tgBle 2. Results look good
if we consider the statistical estimators preserited [Sap90]:

. ) . L ) good R?, high T, for all variables with a low probability
We ran 540 simulations with anticipation ranging from y5jue. However, this model works on the logarithm of all

4 minutes to 12 minutes, vertical speed error ranging from \5iaples. An other standard, but more interesting (and in-

1 t0 40% and ground speed error ranging from 2 to 16%. yitjve), estimator of the validity of the model is:
In table[], we give a very short sample of data found by

2.4 Results

simulations. i=n, Sz
t,, is the duration of the time window in minutes, is S, = \/Zi—l (Ni — Ni)
the horizontal uncertainty ard is the vertical uncertainty. Mo

Ny is the number of conflicts measured for these values for
direct routes andV, for standard routes.

It must be noticed (these results are not shown in the
table) that whert,, = 0, N = 1726 for every value ok,
ande, (when no predictions are made, there can’t be more
conflicts), and thatv = 1726 also for all values of,,
when bothe, ande, are equal to 0 (without uncertainties,
conflicts can be detected from the beginning).

wheren, is the total number of observationd]; is the
number of conflicts observed, and is the number of con-
flicts predicted by the model.

S. can be “interpreted” as a quadratic mean of the dif-
ferences between observed values and predicted values.
For that model, we havs. = 487, which is not a so
small value if we consider that the actual number of con-
flicts range from 1726 to 14216.

Another indicator is:

T (- )2
The problem when doing statistical analysis is to fit the S = o=t VN
data into the models that can be built and evaluated. In To

t_he fws':jtvlvo ShUbseCt'OnS’ we desckr;be sqrpfle mclj"t'Plr']CI?' The S, indicator has the disadvantage of giving more
tive models whose parameters can be easily found with lin- weights to large values, while this one estimates a global

ear regression (by using the logarithm), while in the third “percentage” of error. For this model, we haye= 0.12
section we present a more complex model, requiring more a quite large value aéain ' o
elaborate methods to find the parameters. Moreover, this model has a major problem. With both

ey ande, equals to zero, we should gat = Ny, but this
2.5.1 A simple multiplicative model is not the case.

2.5 Statistical modeling (direct routes)

In order to be able to use simple statistic methods, we tried
the following modeling: 2.5.2 Another multiplicative model

N = No+ag t9 (1+e) (14 e,)% Another model is:

w

— ai a2 as
tw, €4, €, and N are the variables described in the sub- N = No+ao t €5 €

section above, whiléV, is the number of conflicts when
ty =€g =€, =0.
Using logarithms, we get: log(N—Ny) = log(ag)+a1 log(t,)+as log(ey)+aslog(e,)

Using logarithms, we get:

log(N — No) = log(ao) + a1 log(tw) + Linear regression results are summarized in gble 3. There
azlog(l+e4) + aslog(l +e,) again statistical results look good, but the computation of



Estimate| SE Tstat | PValue 2.6 Statistical modeling (standard routes)
log(ap) | 8.49 0.0398 213 0

ay 0.917 0.0144 64 0 In this section, we consider the problems on standard

az 0.694 0.00924| 75 0 routes. We only compute results for the best model, i.e.

as 0.183 0.00503| 37 0 the additive and multiplicative one.

R? =0.959123
2.6.1 A model for standard routes
Table 3:N = Ny + ag tol 6;2 el
We now apply the following model:
S. and s, givesS. = 453 ands. = 0.12, values ex- N = Ny +agty (eg> +azey?)

tremely close to the one found for the other multiplicative
model. This model corrects the problem above, but a new t© the results found on standard routes.

one arises: with this formula, having = 0 or e, = 0 will We used exactly the same methods than above to find
give N = N,, which is, of course, incorrect. the parameters of the model. Then, we have:
N 1.216 1.277 1.180
2.5.3 A multiplicative and additive model Ny L4177 (8.05¢,7 4 0.8 ¢,7)
The two models above both exhibit congenital problems. We have here. = 0.058, an excellent fit again.
We would like to have a model which givég = N, only We are still quite close to the theoretical model, but
whent,, = 0 with any value ofe, or e,, or whene, = 0 we must note some differences: the exponents are slightly
ande, = 0 with any value oft,,. larger than 1 (closer to 1.2), but the most striking fact is
The simplest model having these two features is: the value of the constant of the ground speed error. While
it remains the same for vertical speed error (around 0.5), it
N = No +aoty! (€52 +azep?) is more than twice the direct route model value for ground

speed error (8.05 instead of 3.66). This is easy to under-

But this model is both multiplicative and additive: we can stand: as aircraft fly on routes, there are much more prob-
not use standard regression methods to find the optimal val-lems of takeover and face to face.
ues of the parameters.

The usual method is then to try to find the set of parame-
ters minimizing thes, or thes, functions described above. 3 Conclusion
We finally decided to optimize..

We used both global optimization (interval arithmetic In this paper, we have presented a theoretical model and
and branch and bound) and local optimization (simplex) to a statistical analysis of the influence of the vertical and
find the optimal set of parametels [Hah92]. We finally get ground speed errors on conflict probe.

(when dividing byNy): The formulas which summarizes this study can be writ-
ten approximatively:

N

— =1+10,7%%(3.66 ¢, *% + 0.48 ) 77%) N

No g Na

N = 1+t, (3.5e4+0.5e,)
0

For that set of parameters and that model, we have- N, Lo Lo Lo
0.048, an excellent value, much lower than the values N 1+1t,% (8e,” +0.5¢,?)

found for the other two models.

Whene, = 0, the increase of the number of conflict whereNﬂU represents the ratio of conflicts detected over
given by this model is almost identical to the formula found conflicts really happeningN; is the formula for direct
in the theoretical part of this paper. Exponentg gfand routes, andV, the formula for standard routeg), being

ey are extremely close to 1. the prediction anticipatiorg, being the ground speed er-
We notice that the exponent ef is also almost equal  ror (in percentage) ang, being the vertical speed error (in
to 1, but this term has a lesser contribution, ohly of the percentage also).

ey contribution. We can try to explain this result: aircraft This model shows that, if we want to detect conflicts
are stable during a large part of their flight, so the vertical 10 minutes before they appear, and accept to detect twice
uncertainty only has an influence during a smaller part of the actual number of conflicts, we would need, for exam-
the flight than the horizontal uncertainty. ple to havee, < 0.014 = 1.4% ande, < 0.1 = 10%



on direct routes; these values are currently out of reach of [Nie89a]
ground based trajectory prediction systems without using
FMS informations.

The study also shows that improving significantly tra-
jectory prediction will drastically reduce the number of i
conflicts detected, thus giving the controller a significant [Nie89b]
increase in his comfort, and probably a significant increase
also in sector capacity.

These might be tracks that could be followed in the near

future. [Sap90]
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