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Introduction

As traffic keeps increasing, En Route capacity, especially in Europe, becomes a serious
problem. Aircraft conflict resolution, and resolution monitoring, are still done manually by
controllers. Solutions to conflicts are empirical and, whereas aircraft are highly automated
and optimized systems, tools provided for ATC control are very basic, even out of date.
If we compare the current capacity and the standard separation to the size of controlled
space, the conclusion is easy to draw: while ATC is overloaded, the sky is empty. It must
be noticed that enhancing En Route capacity does not require optimal resolution of aircraft
conflicts.

The need for an automatic problem solver is also a serious concern when addressing
the issues of free flight. Tt is still very much unclear how conflicts will be solved in free
flight airspace. Human controllers highly rely on standard routes and traffic organization
for solving conflicts; they are much quickly overloaded when controlling aircraft flying on
direct routes. Free flight traffic, with a completely unorganized structure, might require
automated, computer based, solvers. Moreover, one of the aim of free flight is to give
aircraft optimal trajectories, whereas using ACAS techniques is certainly not optimal, and
should only looked upon as a last issue system.

In this paper, we present an optimal problem solver, based on a stochastic optimiza-
tion technique (genetic algorithms). It builds optimal resolution for complex conflicts and
also computes a large number of nearly optimal resolutions that do not violate separation
constraints.

Part 1 of the paper introduces the problem solver, its constraints and goals. Modelling
is discussed in part 2. Part 3 introduces genetic algorithms techniques and the coding of the
problem. Part 4 presents different examples of resolution of very complex test problems.
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In part 5 we present the complete ATC simulator, conflict detector and cluster builder used
to benchmark the problem solver on real traffic; we also discuss weaknesses of the system
and possible improvements.

1 Conflict resolution

1.1 Problem solvers

Conflict resolution is a very complex mathematical problem involving trajectory optimiz-
ation and constraints handling. This problem has two faces: find automatically solutions
to the conflicts, and find the optimal solution regarding delays. There have been many
attempts to reach these objectives, automation and optimization. However, most of the
time, these two objectives are confused:

¢ AERA 3 [NFCT83, Nie89b, Nie89a] considers optimum results in the “Gentle-Strict”
function for a two aircraft conflict, but the “Maneuver Option Manager” only seeks
after acceptable solutions and does not focus on the optimum.

o Karim Zeghal [Zeg94], with reactive techniques for avoidance, gives a solution to
the problem of automation which is robust to disturbance, but completely disregards
optimization. Furthermore, the modelling adopted implies a complete automation of
both on board and ground systems and requires speed regulations which can not be
handled by human pilots and would probably be very difficult to apply to current
aircraft engines without damaging them.

e ARC-2000 [K*89, FMT93] optimizes aircraft trajectories using 4 dimensional cones
and priority rules between aircraft. Optimum is not reached. Moreover the system
relies on the availability of FMS-4D for all aircraft?.

o A first approach to conflict resolution by genetic algorithms? was done by Alliot and
Gruber [AGS93]; more advanced results were presented in [DASF94b, DAN96]. An
other approach using also genetic algorithm has been tried by Kemenade, Hendriks,

Hesseling and Kok [vKHHK95].

1.2 Specifications of the system

The main idea behind the design of the solver was to be as close as possible to the current

ATC system.

Constraints: the solver has to handle the following constraints:

't must be noted that only the ARC-2000 system has been tested on real traffic.
21t must be noted that genetic algorithms were also applied to airspace sectoring with promising res-

ults [DASF94a].



o Conflict free trajectories must respect both aircraft and pilot performances.
Considering the evolution of ATC toward automation [DAM93], trajectories
must remain simple for controllers to describe as well as for pilots to under-
stand and follow.

e Trajectories must take into account uncertainties in aircraft speed® due to winds
or turbulence.

e Maneuvers orders must be given with an advance notice to the pilot. When a
maneuver has begun, it must not be called into question. A maximum of one
maneuver per aircraft should be forecasted for the next twenty minutes.

o If possible, conflicts must be solved horizontally for comfort and economical
reasons, especially when aircraft are leveled.

Goals: We want to achieve the following goals:

e find conflict free and optimal trajectories

e compute these trajectories in real time

¢ find many different optimal or nearly-optimal solutions, so that in a transition
phase to automation, this tool could be used to assist a human operator

2 Modelling

In this paper we will only give resolution orders in the horizontal planes. It could and will
be extended to 3D conflict resolution. However, detection will be done in 3D.

2.1 Theoretical results

Optimal Command Theory with State Constraints developed by Bryson and Ho [BH75],
supplementary conditions exposed by Kreindler [E.K82], Bryson, Denham and Dreyfus
[JWS63] lead to the following conclusions exposed by Durand, Alech, Alliot and Schoenauer
in [DAAS94]. For a conflict resolution involving two aircraft: at the optimum, as long as
the standard separation constraint is not saturated, aircraft fly in straight line. When
saturating, aircraft start turning, and as soon as the separation constraint is freed aircraft
fly straight again. This result can easily be extended to the case of n aircraft, with n > 2.
When moving only one aircraft, it can be proved (see [Dur94]) that trajectories are regular,
they do not include discontinuous points and the minimum increase = (in percentage) of
the trajectory length is described by the following implicit equation:

1 2420 + 22 4 (+d) (VZ+2a+22 =& +1)
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3 Aircraft ground speeds can not be forecasted precisely because of winds, and radar precision. Moreover,

models to forecast aircraft ground speeds are not reliable enough. Consequently, uncertainty on speeds
have to be introduced in the model. We will discuss these issues in part 5.



In this equation d is the standard separation divided by the initial distance to the
trajectory cross, speeds are equal and normalized, the trajectory angle is 90 degrees.

This equation can be generalized to different speeds and angles. Numerical resolutions
shows that the length of the conflict free trajectory increases when:

e the angle of incidence between the two aircraft decreases.
o the speed ratio gets close to 1.
e aircraft are getting closer to the conflict point.

It can also be mathematically proved (see [Dur94]), that if aircraft parameters (speed
and heading) are constant at intervals, and if aircraft trajectories don’t loop, the set of
conflict free trajectories has two connected components. In one of the two sets, one of the
aircraft always lets the other one on its right side, whereas in the other set, it lets it on its
left side.

The previous mathematical study leads naturally to approximate the conflict free tra-
jectories by a turning point trajectory (figure 1).

When only one of the two aircraft turns, it has been shown that the turning point
approximation lengthens the optimal trajectory by less than 1% if distance between the
aircraft and the conflict point is greater than two standard separations and the angle of
incidence between trajectories is greater than 30 degrees. It can also be proved that the
offset modelling (figure 1), which moves an aircraft to put it on a parallel route, is worse.
However, it has the advantage to linearize the separation constraints. The offset is thus
very easy to compute, but separation constraints must be checked during maneuvers and
the complexity of the problem remains. For n aircraft, 922G finear programs must be
solved: if n = 6, 2097152 linear programs must be solved, if n = 7, the latter number

grows to more than 268 million (see [MDA94]). Moreover, the offset modelling requires
one more maneuver for the pilot. Anyway this type of maneuver is very useful to solve
conflicts between overtaking aircraft and we will still consider it along with the turning
point modelling.

2.1.1 Separating aircraft

Nowadays, aircraft are able to follow a given route at a given altitude, but their speed can
not be precisely predicted. So, controllers often adopt a wait-and-see attitude, in order
to be sure that the conflict will really occur, before solving it. In this paper, we will
assume that there is an error about the aircraft future location because of ground speed
uncertainties. The uncertainties on climbing and descending rates are even more important.
The conflict free trajectory must be robust regarding these uncertainties. So, the aircraft
will be represented by a point at the initial time. The point will become a line segment in the
uncertainty direction, the speed direction in our case. To check the standard separation at
time ¢, we compute the distance between the two segments modelling the aircraft positions
and compare it to the standard separation (see figure 2).
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Figure 3: Resolution cost expectation for different anticipation times.

In the vertical plane, we use a conical modelling (see left part of figure 2). Each plane
has a mean altitude, a maximal altitude and a minimal altitude. To check if two planes are
in conflict, the minimal altitude of aircraft 1 (resp 2) is compared to the maximal altitude
of aircraft 2 (resp 1).

2.1.2 Maneuver decision time

Because of uncertainties, a conflict may be detected twenty minutes before it should occur
and finally may not happen. Consequently, deciding to move an aircraft in that case would
be useless, and could even generate other conflicts that would not occur if no maneuver
had been decided. This explains why controllers do not solve conflicts too early. With the
turning point modelling, when there is no uncertainty, the earlier the maneuver is started,
the lower the delay. However, if speed is not strictly respected the earlier the conflict
is detected, the lower the probability it will actually happen. Thus, a compromise must
be reached between the delay generated and the risk of conflict. Let’s imagine a conflict
between 2 aircraft flying at the same speed (400 knots) and converging at a right angle
(uncertainty on speed is 5 per cent and the standard separation is 10 nautical miles). We
can define the resolution cost expectation of the conflict as the product of the resolution
cost and the probability of conflict for a given anticipation time. Figure 3 shows that for
this example, the best maneuver decision time is about 20 minutes before the conflict. This
results confirms that “the earlier the better” is not the best tactic when uncertainties are
introduced in the model.

For the offset modelling, the resolution cost is not depending on the anticipation time
so that “the later, the better” is a good strategy.
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Figure 4: The Model.

2.2 Choosing the model

Both offset modelling and turning point modelling must be kept: for overtaking aircraft,
offsets are more efficient whereas for other conflicts, turning points are more efficient.
However, if we do not want to call into question previous maneuvers and be able to solve
very large conflicts, we must try to start maneuvers as late as possible with respect to the
aircraft constraints. This argument is enforced by the fact that we allow aircraft to have
large uncertainties on their speeds. The turning point angle will be 10, 20 or 30 degrees.
The previous elements lead us to choose the following model (figure 4). A maneuver will
be determined by:

e the maneuver starting time 7.

e the turning point time D.

e the offset ending time O (if no offset, this value will be equal to D).
e the deviation angle S.

This model has the great advantage to reduce the size of the problem. For a conflict
involving n aircraft, the dimension of the research space is 4n. This will allow us to solve
very difficult conflicts with many aircraft without investigating a too large space.

2.3 Real time optimization

The model introduced above is simple enough to be used in a real time optimization
program®. Let’s consider a conflict involving n aircraft and let’s choose a time step (8
minutes for example). Let’s imagine we want to recompute all trajectories every § minutes.
During the optimization time, aircraft are flying and must know if they must change their
route or not. Consequently, for each aircraft, at the beginning of the current optimiza-
tion, trajectories are determined by the previous run of the problem solver and can not be
changed for the next § minutes; afterwards, an offset can be shortened or turned into a
turning point, a turning point can become an offset, etc.

4Simulating 20 minutes of aircraft flight and checking standard separations is very long. Consequently,
a simple modelling is necessary to achieve a real time optimization.
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Figure 5: The model and real time optimization.

For example the first trajectory of figure 5, at ¢ = 0, can not be modified before ¢ = 4.
At the end of the first optimization run, at ¢ = ¢, the current position of the aircraft is
updated. The maneuver that occured between t = § and ¢ = 24 is kept as a constraint for
the second optimization run (on the example, no maneuver is decided).

On the above example, we can see that the maneuver described on line 2 (resulting
of an optimization at { = 4) is more penalizing than the maneuver described on line 3
(resulting of an optimization at ¢ = 2§). This phenomenon occurs because of uncertainties.
If uncertainties on speed are important, having a small § will be very helpful to minimize
the resolution costs in real time situation.

2.4 Complexity of the problem

The complexity of the problem is exposed by Medioni, Durand and Alliot in [Mé4] Let’s
consider a conflict between two aircraft. We can easily prove that the minimized function is
convex, but the set of conflict free trajectories is not. It is not even connected. If trajectories
don’t loop, the set of conflict free trajectories has two connected components. For a conflict
involving n aircraft there may be 2" connected components in the free trajectory space which
strongly suggests that any method which requires exploring every connected component is
NP. It is important to note that this complexity is independent of the modelling chosen. The
offset modelling seems to be very attractive, because it linearizes constraints. Nevertheless,
each constraint multiplies by two the number of linear programs to solve. Our problem
involves ﬂnZ—_ll constraints. Moreover, linearizing the minimized function, multiplies by 2"
the number of linear programs to solve (we minimize the sum of each aircraft offset which
may be positive or negative). Finally, we will have to solve 925 finear programs, each
one involving @
with 15 constraints in each program.

linear constraints. For n = 5, we have to solve 32768 linear programs



2.5 A global optimization problem

Using classical methods, such as gradient methods for example, becomes useless for our
problem, because of the arbitrary choice of the starting point required by these meth-
ods. Each connected component may contain one or several local optima, and we can
easily understand that the choice of the starting point in one of these components can
not lead by a classical method to an optimum in another component. We can thus ex-
pect only a local optimum. Practical attempts done on LANCELOT Large And Nonlinear
Constrained Fxtended Lagrangian Optimization Techniques [CGT92] have confirmed this
problem and high-lighted others. Convergence is very slow, particularly when introducing
a speed constraint. Solving a five aircraft conflict without vertical offset takes a week on
a Sun work-station. This approach is not efficient for a real time trajectory planning. The
offset modelling linearizes the constraints but the problem remains so combinatorial that
we can not expect to find the global optimum efficiently. Moreover, the separation during
maneuvers must be checked afterwards. This experiment strongly suggests that classical
methods are not well adapted to our problem.

3 Coding

3.1 Genetic Algorithms

Genetic algorithms were initially developed mainly by John Holland [Hol75] in the sixties.
Genetic algorithms are stochastic optimization techniques that mimic natural evolution.
Figure 6 describes the main steps® of GAs: first a population of points in the state space
is randomly generated. Then, we compute for each population element the value of the
function to optimize, which is called fitness. Then the selection process reproduces elements
according to their fitness. Afterwards, some elements of the population are picked at random
by pairs. A crossover operator is applied to each pair and the two parents are replaced by
the two children generated by the crossover. In the last step, some of the remaining elements
are picked at random again, and a mutation operator is applied, to slightly modify their
structure. At this step a new population has been created and we apply the process again
in an iterative way. The different steps are detailed in the following.

3.1.1 Selection

A method called ”Stochastic Remainder Without Replacement Selection” [Gol89] is clas-
sically used. First, the fitness f; of the n elements of the population is computed, and the
average a = y_ f;/n of all the fitnesses is computed. Then each element is reproduced p
times in the new population, with p = truncate(n x f;/a). The population is then completed
using probabilities proportional to f; — pa/n for each element.

5We are using classical Genetic Algorithms and Evolutionary Computation principles such as described
in the literature [Gol89, Mic92].
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Figure 6: GA principle

3.1.2 Crossover

The crossover operator randomly chooses two elements of the population (called parents),
and combines them to create two children that will replace them. Usually, between 25% to
75% of the population is crossed. Several crossover operators can be used:

e the slicing crossover takes one part of the variables of parent 1 (resp 2) and completes
it with the other part of the variables of parent 2 (resp 1) to create child 1 (resp 2).

e the barycentric crossover is used with real variables and recombines two parents by
choosing randomly o € [—0.5,1.5] and creating child 1 (resp child 2) as the barycenter
of (parenty,a) (resp (parent;,1 — a)) and (parenty, 1 — a) (resp (parents, a)).

Most of the time, crossover operators are adapted to the problem so that they generate
children that respect constraints. Heuristics are sometimes used to improve their efficiency.
However, the crossover operator must not be too deterministic, otherwise the algorithm
may converge quickly to a local optimum and get stuck.

3.1.3 Mutation

The mutation operator randomly chooses an element of the population and slightly modifies
it.Between 0.1% to 15% of the population is usually mutated. Depending on the types of
variables used, the mutation operator can change a bit of a string or add a noise to a real
variable. The goal of this operator is to generate new elements that explore the search
space.

10
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3.1.4 Simulated Annealing Tournament

GA are not a magical tool, coming out of nowhere. They are closely related to random
search techniques. For example, random walk in a search space is a GA with only one
population element and no crossover. As for random walk, GA can be improved by including
a Simulated Annealing process after applying the operators [MG92]. For example, after
applying the crossover operator, we have four individuals (two parents P1,P2 and two
children C'1,C2) with their respective fitness. Afterward, those four individuals compete
in a tournament. The two winners are then inserted in the next generation. The selection
process of the winners is the following: if C'1 is better than P1 then C'1 is selected. Else
C'1 will be selected according to a probability which decreases with the generation number
(any cooling scheme used in simulated annealing can be used). At the beginning of the
simulation, C'1 has a probability of 0.5 to be selected even if its fitness is worse than the
fitness of P1 and this probability decreases to 0.01 at the end of the process. A description of
this algorithm is given on figure 7. Tournament selection brings some convergence theorems
from the Simulated Annealing theory. On the other hand, as for Simulated Annealing, the
(stochastic) convergence is ensured only when the fitness probability distribution law is
stationary in each state point [AK89].

3.2 Coding our problem

An example of chromosome is given in figure 8. Each time value represents is coded by a
positive integer (7; < D; < 0i). The deviation angle can be —30, —20, —10, 0, 10, 20 or
30.

At each new step, some data must be given:
1. The duration of the optimization.

2. The anticipation time.

11
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Figure 8: Structure of the chromosome

3. The time step used during the simulation.
4. The horizontal separation, in Nm.

5. The position of each aircraft.

6. The heading of each aircraft.

7. The speed of each aircraft.

8. The uncertainty on each aircraft speed (it can depend on its characteristics, its equip-
ment and on the weather conditions).

Other global data are required by the Genetic Algorithm such as the number of gener-
ations, the number of elements, the percentage of elements to cross and the percentage of
elements to mutate.

3.3 Computing the fitness

One of the main issues is to know how to compute the fitness of a chromosome. We have
a poly criteria problem to solve, in fact the following criteria have to be matched together
to give us a single fitness function:

e The delay due to a deviation for each aircraft must be as small as possible.

e However, the number of aircraft deviated and the total number of maneuvers must
be as low as possible. Thus, instead of sharing the global delay on all the aircraft,
some aircraft will support a part of the delay and others not. The sharing process
described above is very important to give different equivalent solutions.

e The maneuver duration for an aircraft must be as short as possible so that the aircraft
is freed as soon as possible for another maneuver.

12
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e The trajectories must handle the separation constraints.

Instead of considering a global fitness value that takes into account the different length-
enings of the trajectories and the conflicts between the aircraft, we keep in a n?
matrix F' (where n is the number of aircraft) these values. If i # j, F;;
conflict between aircraft ¢ and j. It is set to 0 if no conflict occurs and increases with
the seriousness of the conflict. F;; measures the lengthening of aircraft s trajectory. This

sized
measures the

fitness matrix contains much more information than the previous scalar global fitness and
this will allow us to define more deterministic crossover and mutation operators.

To take into account both the delay and the maneuver duration, we decided to measure
the maneuver occupancy surface S (figure 9). This value increases with both the delay and
the maneuver duration. It is interesting to note that controllers currently use this notion of
maneuver occupancy surface. To minimize the number of maneuvers, add to .S the number
of maneuvers N multiplied by a coefficient & (N = 0 if no maneuver, 2 if it is an turning
point and 3 if it is an offset).

At each time step ¢, we compute (Y, ; as the difference of the standard separation and
the distance between the segments ¢ and j describing aircraft ¢ and j position at time ¢.
These values are added and give a measure of the conflict between ¢ and j. So, the fitness
matrix is computed as follows:

F: = Si+kN;

1

total teme

Fy o= > (Cuiy)

t=0

It is obvious that the fitness matrix is symmetrical. A triangular matrix could as well be
used. We can now define a global scalar fitness as follow:

1
Ai,4),i 44, F; 40 = F = —————
(4,9), i # 7, Fij # 24+ Yig; Fij
1 1
. - F7: F — _ -
V(i,5),1# 5, Fij=0= 2+1+ZZ~FZ-,2-

This fitness function guarantees that if a chromosome value is larger than %, no conflict
occurs. If a conflict remains the fitness does not take into account the delays induced by
maneuvers.

13
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Figure 10: Adapted crossover and mutation operators

3.4 Improvements
3.4.1 Adapted Crossover and Mutation

GAs seem very powerful because they do not require much information on the fitness
function. However, classical operators used by Gruber, Alliot and Schoenauer in [AGS93]
did not give good results. Moreover, we know much about the fitness function and it can
be very useful to use this information to create adapted crossover and mutation operators.
Durand, Alliot and Noailles describe these operators in [DAN94]. We can define for each
aircraft its local fitness:

Fi =

J

(Fij)
=1
where F; ; is the matrix described in section 3.3.

The crossover operator is described on the left part of figure 10. After choosing 2 parents
A and B, we compare the local fitnesses of their aircraft (These fitnesses are named A;
and B; on figure 10). For aircraft ¢, if A; < B; — A (A is a value that modulates the
operator’s determinism) the 2 children inherit aircraft ¢ of father A. If B; < A; — A, the 2
children inherit aircraft 7 of father B. If none of these two conditions are checked, aircraft
2 of children 1 and 2 are two random combination of aircraft : of the two parents.

The mutation operator is described on the right part of figure 10. After choosing a
chromosome, an aircraft is mutated (on figure 10 aircraft 4 is chosen). Aircraft having a
high fitness (more than ¢ where ¢ modulates the operator’s determinism) can be chosen
only if every aircraft has a high fitness.

These operators have the great advantage to be rather deterministic at the beginning of
the optimization so that a solution without conflict can be very quickly found. When such
solutions become sufficiently numerous, these operators are less deterministic and other
parts of the research space can be explored.

14



Two parameters (A and ¢) where introduced and influence the determinism of the op-
timization. Because of the determinism of these operators, using sharing becomes essential.

3.4.2 Sharing

We have already seen that the problem is very combinatorial and may have many different
optimal or nearly optimal solutions. In order to find most of these solutions® and to avoid
getting trapped in local optima, the sharing process introduced by Yin and Germay [Y G93]
is used. This sharing process has the great advantage to grow in nlog(n) (instead of n?* for
classical sharing) if n is the size of the population.

A sharing process requires introducing a distance between two chromosomes. Defining a
distance between two trajectories is not very simple. In this study, we define five trajectory

types:

e the aircraft is not deviated

o the aircraft is deviated on the right for a turning point

the aircraft is deviated on the left for a turning point

the aircraft is deviated on the right for an offset
o the aircraft is deviated on the left for an offset

A discrete distance is defined as follow: two chromosomes belong to the same class if each
of their aircraft follow the same trajectory types. If not, they belong to different classes.
The fitness value of each chromosome is then divided by the number of elements in its class.
Results show that sharing was very useful for combinatorial problems.

Simulated annealing and sharing process have really improved convergence of GAs and
were definitely adopted.

3.4.3 Improving the result

Genetic algorithms are very efficient to solve global combinatorial optimization problem
but are not very efficient to solve local search with a good precision. Consequently, it is
very efficient, at the last generation of the genetic algorithm, to use a local optimization
method to improve the best solution of each chromosome class defined above. The local
method adopted in this study is very simple: we apply a hill-climbing algorithm to the best
chromosomes at the end of the GA run.

5Finding several solutions is very interesting because the controller can make a choice and negotiate it
with pilots.

15
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Figure 11: 2 aircraft conflict

3.4.4 Genetic algorithms versus simulated annealing

When dealing with stochastic optimizations, it is always possible to try to use a pure
simulated annealing optimization technique. Experiments were done using ASA [Ing89,
Ing93, Ing95]. But in this case (which is a good example to the contrary of [IR92]), ASA
can not use adapted crossover operators, and results with pure stochastic operators were
Very poor.

4 Results

We present here three examples to justify the model and illustrate the performance of the
algorithm.

4.1 Model Justification

In this first application, we consider the conflict between two aircraft described on figure 11.
The anticipation is set to 2 minutes, aircraft speed (400 knots) are known with an error
of 5 per cent and trajectory is forecast for 20 minutes. In this case, if aircraft 0 real
speed is 380 knots and aircraft 1 real speed is 420 knots, because of uncertainty, at last
no conflict occurs (the standard separation is 4 nm). Figures 12,13,14 show the result of
the genetic algorithm at time ¢ = 2 minutes, 4 minutes, 6 minutes, 8 minutes, 10 minutes
and 12 minutes. The thick line describes the next two minutes trajectory that can not be
changed, the thin line represents the optimal trajectory computed by the genetic algorithm”.
Because of uncertainties, the initial optimized trajectory is not very good. As times goes
on, aircraft are closer to the conflict point and uncertainty decreases so the optimized
trajectories give smaller deviations. Finally, at time ¢ = 12, the conflict disappears. This
example demonstrates the interest of the model because it allows uncertainties and delays

“The parameters of the genetic algorithm were: number of generations: 20, population elements: 50,
percentage of crossover: 60, percentage of mutation: 15, simulated annealing for crossover: yes, sharing:
yes, hill-climbing method: yes.

16



4000

3000

2000

1000

-1000

-2000

-3000

-4000

4000

3000

2000

1000

-1000

-2000

-3000

-4000

4000

3000

2000

1000

-1000

-2000

-3000

-4000

"2 mi r.ugt?‘gi‘l —+-

ropttra_1" - 3000 |-

. 4000

-6000

-4000

-2000

2000

"2_min_trg_1" -+-
-

pt_trg_1" - 1

4000 6000 -6000 -4000 -2000

Figure 12: t=2 minutes and t=4

"2_min_trg_1" -+-

T 4000 —

minutes

2000 4000 6000

“opt_trg_1" ---- 3000 -

2000 [~

-6000

-4000

-2000

2000

"2_min_trg_1" -+-

“opt_trgj_1" ----- 7

4000 6000 -6000 -4000 -2000

Figure 13: t=6 minutes and t=8

"2_min_trg_1" -+-

T 4000 —

minutes

2000 4000 6000

“opt_trg_1" ---- 3000 -

-6000

-4000

-2000

2000

"2_min_trg_1" -+-

“opt_trgj_1" ----- 7

4000 6000 -6000 -4000 -2000

17

Figure 14: t=10 minutes and t=12 minutes

2000 4000 6000



“avion_1" —+-
4000 | “avion 2" -B-- -
“avion 3"

“avion 6" o~ |

-5000 L L L
-5000 0 5000 10000 15000 20000

Figure 15: 7 aircraft conflict (aircraft come from the left)

maneuvers as long as possible. Thus, the genetic algorithm gives an optimal command for
the next 2 minutes and the optimal trajectory associated.

4.2 Long lasting conflicts

In this test, 7 aircraft are coming from the west and going to the east with different speeds
(the furthest has the greatest speed and the nearest the lowest speed). The aircraft are not
exactly following the same routes. Figure 15 gives the trajectories of the 7 aircraft with 5
per cent error on speed, 5 minutes of anticipation and 20 minutes trajectory forecast. The
size of the population of the genetic algorithm was doubled.

This example was done to show that our model allowed long lasting deviations when they
can not be avoided. Here, aircraft 6 is deviated for more than 45 minutes. This example
shows the importance of the offset model to solve long lasting conflicts. Solving this problem
with turning points would have induced much larger delays and very big deviations (in the
example, aircraft 6 would have been deviated several hundreds of nautical miles away from
its trajectory).

4.3 Very difficult problems

To push the system to its limits, we decided to test it on two very difficult conflicts involving
20 aircraft.

The first one (left part of figure 16) deals with 20 aircraft on a circle. It has very few
solutions because all the aircraft are conflicting with each other. Only solutions where all
the aircraft (except perhaps one) turn in the same direction are conflict free. Right part of
figure 16 gives the result of the optimization with a speed error of 3 per cent, a 5 minutes
anticipation time and a 20 minutes trajectory forecast®. The minimum distance between

8The parameters of the genetic algorithm were: (number of generations: 20, population elements: 100,
percentage of crossover: 60, percentage of mutation: 15, simulated annealing for crossover: yes, sharing:
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Figure 17: 20 aircraft conflict (10 different conflicts)

aircraft is 5.6 nm (the standard separation was set to 4 nm).

The second conflict (figure 17) deals with 10 independent conflicts between two air-
craft. In this example there are many available solutions which can easily be found by a
human being because of the symmetries of the problem, but for the Genetic Algorithm, the
complexity remains. It is then an excellent validation of the problem solver: right part of
figure 17 gives the result of the optimization with the same parameters as previously, and
the solution found is optimal. The minimum distance between aircraft is 4.1 nm.

These examples also show that using adapted operators and sharing is mandatory with
very difficult problems. These tests were solved with 4 different configurations of the GA:

e no sharing process and adapted operators (described previously).

e a sharing process and adapted operators.

yes, hill-climbing method: yes).
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Figure 18: Best fitnesses for two different 20 aircraft conflict

e no sharing process and classical operators.
e a sharing process and classical operators.

For these 4 tests, we have measured on each example the value of the best fitness on
the 20 generations of the genetic algorithm (figure 18). First, we can check that adapted
operators are very efficient because with classical operators, no conflict free solution is found
before generation 20 (tests have shown that the first conflict free solution is found after
generation 200) whereas with adapted operators a conflict free trajectory is always found
before generation 10 (a solution is conflict free if its fitness is more than 0.5). Figure 18
shows also that the sharing process lengthens the growth of the best fitness. However, the
final best fitness is as good with a sharing process as it is without. It is even better with
a sharing process when the conflict is very difficult to solve. The sharing process has the
great advantage to help the genetic algorithm avoiding local minima and to give different
conflict free solutions.

5 The ATC testbench

5.1 General architecture of the test bench

The above tests shows that the problem solver is very efficient on artificial tests. Then we
had to test it in a “real” environment.

Therefore we built a complete testbench, using real traffic data as inputs. The archi-
tecture of the testbench (figure 19) was the following:

e one process (called P1) is the traffic simulator. It uses unregulated flight plans as
inputs. Aircraft depart from airports, climb to their flight level and then descend
to their destination. The flight model is a simple one (figure 19): its inputs are the
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aircraft level and whether the plane is climbing, descending or levelled. Then, the
model gives a ground speed and a climb or descend rate. There is no way to change
the climb or descend rate, nor to modify the speed.

e the second process (P2) is in charge of conflict pair detection, clustering of pairs, and
verification of new trajectories built by the solvers.

e the third process (P3) is the problem solver.

The system architecture is detailed in figure 20. Process P1 sends current plane positions
and flight plans to process P2. Then P2 builds trajectories forecast for the next 20 minutes,
and does conflict detection by pairs. The conflict detection model has been described in
figure 2; P2 takes into account speed uncertainties as described in part 2.1.1. After pair
detection, P2 does a clustering which is a transitive closing on all pairs. Each equivalence
class for the relation “is in conflict with”, is a cluster.

Then, each cluster is solved in parallel by the problem solver, as each cluster has in-
dependent aircraft. The problem solver sends back to P2 modified trajectories. Then P2
once again runs a conflict detection process to check that modified trajectories for aircraft
in one cluster does not interfere with aircraft in an other cluster. If no interference is found,
resolution orders for the next five minutes are sent to P1. If there are interferences, then
the two (or more) clusters interfering are joined and the problem solver is used again on
that (these) cluster(s). The process is iterated until no interferences between clusters is
detected. The process will always converge: in the worst case, P3 will have to solve a very
large cluster including all aircraft that are in conflicts in the next 20 minutes. However, this
technique is usually efficient as a very large number of clusters can be solved very quickly
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in parallel®.

5.2 A complete test

Testing of the problem solver is still in progress, but some tests have been already com-
pleted [Cha95]. We describe here an experiment ran with flight plans of the 12th of Novem-
ber 1992. There were 4835 aircraft over France. Uncertainties on climbing rate and ground
speed were set to 1%, and standard separations were set to 6 Nm and 1000 feet. The
experiment was run under the Free Route hypothesis (aircraft were allowed to go directly
to their destination). We only detect and solve conflicts above 6000 feet, as we are only
interested in En Route conflicts.

When running this one day test with a very basic conflict detection algorithm (only ac-
tual conflicts are detected, there is no uncertainty on speed) and with no conflict resolution,
665 conflicts were detected.

When running the complete test bench, the P2 process detected 4408 pairs of aircraft
in conflict. Of these 4408 pairs only 908 where different conflicts. This is because P2 is
repeated many times (every 5 minutes, and sometimes twice or more in one step because
of cluster union). The problem solver had to solve 1888 clusters. 1541 were completely
solved. 260 were “almost” solved, which means conflicts not solved at first time finally did
not occur because of uncertainties on plane speeds. This lets 80 conflicts not solved. On
these 80 conflicts, many of them were different instances of the same one. When keeping
only different conflicts, we only had 23 unsolved conflicts. All were conflicts due to aircraft
landing, taking off or arriving in the French airspace at the same time and the same place:
this is because we use unregulated flight plans. Cutting every conflict under 6000 feet is
not enough to suppress all these problems, as aircraft arriving from other airspace, aircraft
departing from the same airport and following the same route or aircraft landing at the
same airport at the same time generate conflicts that can not be solved.

Results are very interesting, especially if we take into account the fact that the problem
solver can only give orders in the horizontal plane.

5.3 Weaknesses of the problem solver

There are still lots of problems to solve:

e the main problem is certainly trajectory forecast. The system is highly sensitive to
errors on aircraft speed. In the previous example, speed uncertainties were set to
1%. Other experiments were done with much larger speed uncertainties (up to 7% on
ground speed and 20% on climbing and descending rates). There, the system almost
saturates: there is a very large number of big clusters, and without resolution orders
in the vertical plane, solving conflicts becomes very difficult. Trajectory forecast is
definitely a serious issue for all systems doing either automatic resolution or controller

9Technicallyspeaking, we use a network of workstations linked by an Ethernet network and we use
PVM [GBD194] to pass messages between applications.
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assistance: no controller would accept to work with a system detecting conflicts that
never occur, or not detecting conflicts that will occur. The only system to address
correctly this issue seems to be ARC-2000 [K*89, FMT93]: as it relies completely
on the FMS-4D on board, trajectory forecast is supposed to be almost perfect. But
its hypotheses are very strong. With GPS report in a few years, the problem of
radar precision will be solved. However, for ground based systems, there will still a
lot of work to do. The tabulated model used in our system is definitely too poor,
but mass-energy models need data that are not yet available (such as plane mass
before departing, or company customs for Mach point setting, etc.) Other more
elaborated models describing the complete flight equations set for each plane need
even more data that aircraft manufacturers are very reluctant to give. Moreover,
wind models are still quite inaccurate. According to us, an adaptive system, either
based on symbolic learning or neural network, should be able to adapt dynamically
its parameters according to the “standard” plane model and past aircraft positions.
Work is currently in progress on that subject.

Our system needs to be extended to resolution in the zplane. This is not a serious
problem, and will be done in a few months. We do not plan to solve conflicts by speed
modifications. Theoretical study shows that optimal En Route conflict resolution by
speed modifications would require large anticipation time'?, which is quite unrealistic
due to plane speed uncertainties.

A complete proof of the system is impossible: it is clear that if there are “enough”
aircraft, any system would become overloaded and unable to solve conflicts, just
because there will not be enough room to move aircraft. On the opposite, with no
aircraft, any system can solve every conflict. Proving an ATC system is in no way
possible. Anyway, the current ATC system is not proved either, and human beings
will always be prone to fail, and will probably be in the control loop for quite a long
time.

This system must be looked upon as a filter in the complete ATC system. Before
solving conflicts, there will always be the need for regulations and planification, and
in case of unexpected failure of the problem solver, there will always be the need for
systems such as the ACAS system to ensure last minute separation.

Conclusion

The model introduced in this paper is a first step in the resolution of real conflicts with
real aircraft. The goal of this work was to demonstrate that a mathematical approach,
a mathematical modelling and the use of state of the art global optimizations techniques
could be a good way to build a problem solver and a complete model for conflict detection

10 Anticipation time depends on different parameters such as angle of convergence, speed margins for each
plane, standard separation etc. More details can be found in [DA95].
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and resolution. Even if there are still problems to solve, the results of the test bench are
definitely promising.

This work is sponsored since 1992 by the CENA which is the institute in charge of
studies for improving the French air traffic control systems.
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