A Fast and Reliable Hybrid Algorithm for
Numerical Nonlinear Global Optimization

Charlie Vanaret and Jean-Baptiste Gotteland and Nicolas Durand
Laboratoire de Mathématiques Appliquées, Informatique, Automatique pour 1’ Aérien
Ecole Nationale de 1’ Aviation Civile, Toulouse, France
{vanaret, gottelan, durand} @recherche.enac.fr

Jean-Marc Alliot
Institut de Recherche en Informatique de Toulouse, France
jean-marc.alliot @irit.fr

Abstract

Highly nonlinear and ill-conditioned numerical optimization
problems take their toll on the convergence of existing res-
olution methods. Stochastic methods such as Evolutionary
Algorithms carry out an efficient exploration of the search-
space at low cost, but get often trapped in local minima and do
not prove the optimality of the solution. Deterministic meth-
ods such as Interval Branch and Bound algorithms guaran-
tee bounds on the solution, yet struggle to converge within
a reasonable time on high-dimensional problems. The contri-
bution of this paper is a hybrid algorithm in which a Differen-
tial Evolution algorithm and an Interval Branch and Contract
algorithm cooperate. Bounds and solutions are exchanged
through shared memory to accelerate the proof of optimal-
ity. It prevents premature convergence toward local optima
and outperforms both deterministic and stochastic existing
approaches. We demonstrate the efficiency of this algorithm
on two currently unsolved problems: first by presenting new
certified optimal results for the Michalewicz function for up
to 75 dimensions and then by proving that the putative mini-
mum of Lennard-Jones clusters of 5 atoms is optimal.

1 Motivation

Evolutionary Computation (EC) algorithms have been
widely used by the global optimization community for their
ability to handle complex and high-dimensional problems
with no assumption on continuity or differentiability. They
carry out a fast exploration of the search-space and generally
converge toward satisfactory solutions. However, EC may
get trapped in local optima and provide suboptimal solu-
tions. Moreover, their convergence remains hard to control
due to their stochastic nature. On the other hand, Interval
Branch and Bound Algorithms (IBBA) guarantee rigorous
bounds on the solutions to nonlinear and nonconvex numer-
ical problems but are limited by their exponential complex-
ity regarding the number of variables and by the dependency
problem inherent to Interval Analysis.

Few approaches attempted to hybridize EC algorithms
and Interval Branch and Bound algorithms. (Sotiropoulos,
Stavropoulos, and Vrahatis 1997) and (Zhang and Liu 2007)
devised integrative methods that embedded one algorithm
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within the other: Sotiropoulos et al. used a Branch and
Bound algorithm to reduce the domain to a list of e-large
subspaces. A Genetic Algorithm (GA) was then initialized
within each subspace to improve the upper bound of the
global minimum. Zhang and Liu used a Genetic Algorithm
within the Branch and Bound algorithm to improve the
bounds and the order of the list ‘of remaining subspaces
to process. (Alliot et al. 2012) proposed a cooperative ap-
proach combining the efficiency of a GA and the reliability
of IBBA to guarantee the optimality of solutions to highly
nonlinear bound-constrained problems. Original optimal re-
sults were achieved on benchmark functions, demonstrating
the validity of the approach. However, local monotonicity
and constraint programming techniques, which exploit the
analytical form of the objective function, were left out in
the basic formulation of the algorithm. In this paper, we
propose an advanced cooperative algorithm in which a Dif-
ferential Evolution algorithm cooperates with Interval Con-
straint Programming. It is reliable as it guarantees bounds
on the global optimum. New optimal results achieved on
two highly multimodal functions — the Michalewicz func-
tion and the Lennard-Jones cluster problem — attest the sub-
stantial gain in performance. In this study, we consider only
bound-constrained numerical minimization problems:

min f(z) (1)
where f : (D =[], [l;,u;] C R™) — R is the objective
function to be minimized. We assume that f is differentiable,
and that the analytical forms of f and its partial derivatives
are available.

The standard Differential Evolution algorithm is pre-
sented in section 2, and details about our Interval Branch and
Contract Algorithm are given in section 3. The implementa-
tion of our hybrid algorithm is detailed in section 4. In sec-
tion 5, we present new optimal results for the Michalewicz
function and we prove that the putative minimum for the
Lennard-Jones cluster of 5 atoms is optimal.

2 Differential Evolution
Evolutionary Computations (EC) are stochastic iterative
optimization algorithms that usually mimic natural pro-
cesses. In particular, Evolutionary Algorithms (EA) are



based on the theory of evolution (survival of the fittest)
where stochastic operators iteratively improve a population
of individuals (candidate solutions) according to an adap-
tation criterion (the objective function), in order to con-
verge toward satisfactory solutions. Numerous EC tech-
niques have recently emerged: Particle Swarm Optimization
(Kennedy and Eberhart 1995), Ant Colony Optimization
(Dorigo, Maniezzo, and Colorni 1996), CMA-ES (Hansen
and Kern 2004), etc. (Alliot et al. 2012) used a Genetic Al-
gorithm, but did clearly state that this algorithm had been
chosen because it was the most familiar to the authors, but
that other EC algorithms might be more adapted to the hy-
bridization. In the following, we use a Differential Evolution
algorithm as it greatly enhanced the original results.

Differential Evolution (DE) is a simple yet powerful
EC algorithm introduced by Storn and Price (1997). It has
proved to be particularly efficient on difficult black-box op-
timization problems. DE combines the coordinates of exist-
ing individuals with a particular probability to generate new
potential solutions. Unlike Genetic Algorithms, it offers the
possibility to move individuals around in only part of the
dimensions. Algorithm 1 describes DE for a n-dimensional
problem.

Algorithm 1 Differential evolution algorithm (DE)

Randomly initialize each individual
Evaluate each individual
while termination criterion is not met do
for each individual x5 € {1,..., NP} do
Randomly pick r, x(io), x(il), x(72)
for each dimension j € {1,...,n} do
if 7 = r or rand(0,1) < C'R then
yj(l) (20) +W x (m;ll) _ x;_lz))
else
(L) _ x(l)
end 1f
end for
if f(y") < f(xV)) then
x® 3@
end if
end for
end while
return the best individual(s) of the population

NP is the population size, W > 0 is the weighting fac-
tor and CR € [0, 1] is the crossover rate. r is a random

index picked in {1,...,n} at each generation to ensure that

at least yﬁ V) differs from 33£ " The algorithm may be stopped

after a fixed number of iterations or when many successive
iterations do not produce better results.

3 Interval Branch and Contract algorithm

Interval analysis (IA) was introduced by (Moore 1966) to
bound round-off errors due to the use of floating-point arith-
metic. A compact interval with floating-point bounds is de-
fined by [a,b] = {z € R|a < x < b}.

In the following, capital letters represent interval quanti-
ties (interval X)) and bold letters represent vectors (box X,
vector x). IR is the set of all intervals. The lower (resp.

upper) bound of an interval X is noted X (resp. X). A
box denotes an interval vector. The width of an interval is
w(X) = X — X, and the width of a box (X1,...,X,) is
max1<l<n w(X;). The midpoint of an interval is m(X) =

(X + X) and the midpoint of a box (Xi,...,X,) is
(2m X1),...,m(X,)). The convex hull of a set of boxes
S'is the smallest box that contains .S.

Interval arithmetic extends to intervals binary operators
(4, —, X, /) and elementary functions (exp, log, cos, etc.).
Interval computations are carried out with outward round-
ing. An interval extension F' of a real-valued function f
guarantees a rigorous enclosure of its range:

VX € IR, f(X) = {f(x) |[x € X} c F(X) (2

The natural interval extension Fy is computed by replacing
real elementary operations by interval arithmetic operations.
IA generally computes a large overestimation of the im-
age due to the dependency problem: when a variable appears
more than once in an expression, each occurrence is treated
as a different variable. However, if f is continuous inside
a box, its natural interval extension yields the exact range
when each variable occurs only once in its expression:

Example 1 Let fi(z) = 2? — 2 and X = (0,2]. The func-
tions fo(x) = x(z — 1) and f3(z) = (z — 3)* — 1 are
equivalent to f,. However,

Fi(X) =10, 2]2 —[0,2] =[0,4] - [0,2] = [-2,4]
Fa(X) = [0,2] % (0,2 = 1) = [0,2] x [-1,1] = [-2,2] (3,
B0 = (0.9~ 5 - 1 =551 — 3 = -3,

We thus have F5(X) C F5(X) C F1(X). F3(X) is the best
computable enclosure, i.e. it is the exact range of f(X).

Interval Branch and Bound Algorithms (IBBA) exploit
the conservative properties of interval extensions to rigor-
ously bound global optima of numerical optimization prob-
lems (Hansen 1992). However, their exponential complexity
hinders the speed of convergence on large problems. The
method consists in splitting the initial search-space into sub-
spaces (branching) on which an interval extension F' of the
objective function f is evaluated (bounding). By keeping
track of the best upper bound f of the global minimum,
boxes that certainly do not contain a global minimizer are
discarded. Remaining boxes are stored in a priority queue
L to be iteratively processed until the desired precision on
the width of the box (e,) or its image (ey) is reached. The
process is repeated until £ is empty.

Given f (the best known upper bound of the global min-
imum), the dynamic constraint f < f may be set to reduce
the boxes. To prove that a box cannot contain a local mini-
mizer, i) if the box has a common bound with the domain, we
check the monotonicity of f, or ii) we set the derivative of f
to zero to find a stationary point. To this end, we make use of
Interval Constraint Programming (ICP), that aims at solv-
ing systems of nonlinear equations and numerical optimiza-
tion problems. Stemming from IA and ICP communities, fil-
tering (contraction) algorithms (Chabert and Jaulin 2009)
narrow the bounds of the variables without loss of solu-
tions. The standard contraction algorithms HC4 (Benhamou



et al. 1999), Box (Van Hentenryck 1997) and Mohc (Araya,
Trombettoni, and Neveu 2010) compute a propagation loop
to narrow the bounds of the variables with revised proce-
dures that handle a single constraint. HC4Revise enforces
hull consistency and computes the optimal contraction (un-
der continuity assumption) when the constraint contains no
multiple occurrences of a variable. The procedure is detailed
in Example 2. BoxNarrow enforces box consistency and
is optimal when the constraint contains multiple occurences
of a single variable. MohcRevise combines HC4Revise
and BoxNarrow algorithms under monotonicity assump-
tion. It is optimal when the constraint is monotonic with re-
spect to all variables.

Alliot et al. used an IBBA that merely determines whether
a box contains a global minimizer. We integrate a contrac-
tion step based on HC4Revise to narrow the bounds of
the variables (algorithm 2). GG; denotes an interval extension
of 5%. The resulting Interval Branch and Contract Algo-
rithm (IBCA) is described in Algorithm 3. The implemen-
tation of this framework is discussed in the next section.

Algorithm 2 Contraction Step

1: procedure CONTRACT(X, f)

2 HC4Revise(F(X) < f)

3 forie {1,...,n} do

4 if X; has a common bound with the domain then
5 Check the sign of G;(X)

6: else

7: HC4Revise(G;(X) =0)

8 end if

9 end for

0:

10: end procedure

Algorithm 3 Interval Branch and Contract Algorithm

[+ +oo > best found upper bound
L+ {Xo} > priority queue of boxes to process
S+ {} > list of solutions
repeat

> selection rule
> bounding rule
> cut-off test

Extract a box X from £
Compute F'(X)
if F(X) < f — ¢y then
CONTRACT(X, f)
J  min(F(m(X)), /)
if w(X) > €, and w(F (X)) > ¢y then
Bisect X into X; and X > branching rule
L+ LU{X1}U{X5}
else
S+ SU{X}
end if
else
Discard X
end if
until £ = @
return S

> filtering algorithms
> midpoint test

> termination rule

HC4Revise (Example 2) carries out a double explo-
ration of the syntax tree of a constraint to contract each oc-
currence of a variable. It consists in an evaluation (bottom-

up) phase that computes the elementary operation of each
node, and a backward (top-down) propagation phase using
elementary projection (inverse) functions.

Example 2 Let 2z = z — y? be an equality constraint, with
x € 10,20], y € [-10,10] and z € [0,16]. The subexpres-
sions are represented by the nodes n1 = 2x, no = y* and
ng =z — nNa.

The evaluation phase (Figure 1) computes niy = 2 X
[0,20] = [0,40], ny = [-10,10]*> = [0,100] and n3 =
[0, 16] — [0, 100] = [—100, 16].

The propagation phase (Figure 2) starts by intersecting
ny and ng: ny = nf = ny Nng = [0,40] N [-100, 16] =
[0, 16]. The backward propagation using inverse functions
yields:

¥ = 2N =1[0,20]n 0,8 = [0,8],

z' = zN(ny +n%) =[0,16] N ([0, 100] + [0, 16]) = [0, 16],
n} = nyN (2 —nlk) = [0,100] N ([0, 16] — [0, 16]) = [0, 16],
y/ =Y N hu”(_\/nil% nl2) = [_10710] N [_474] =

The initial box ( [
duced to ([0, 8], [=4, 4], [0, 16]) without loss of solutions.

N
[0./16] 0 .16]

s -2

A

Figure 2: HC4Revise: propagation phase

4 Cooperative hybrid algorithm

The original cooperative algorithm (Alliot et al. 2012) com-
bined an EA and an IBBA that ran independently, and coop-
erated by exchanging information through shared memory
(Figure 3) in order to accelerate the convergence. The EA
carries out a fast exploration of the search-space and quickly
finds satisfactory solutions. The best known evaluation is
used to improve the upper bound of the global minimum,
and allows the IBBA to prune parts of the search-space more
efficiently. A third process periodically projects EA’s indi-
viduals trapped in local minima onto the closest admissible
box of the IBBA.
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Figure 3: Original cooperative hybrid algorithm

We propose to replace the EA from the original paper by
a DE algorithm that has shown a better convergence toward
the global optimum. Our IBCA algorithm, integrating an ef-
ficient contraction step, replaces the IBBA.

4.1 DE thread

In the basic formulation of the algorithm, ¢, ¢; and iy are
chosen at random in {1,..., NP}, all distinct from each
other and from <. We use a refinement suggested by (Price,
Storn, and Lampinen 2006): the random offset method as-
signs a unique index iy = (i + k) mod N P, where k is an
offset randomly chosen in {1, ..., NP} at each generation.
The DE has no termination criterion and stops only when the
IBCA has reached convergence.

Two approaches deal with newly generated individuals
that do not satisfy boundary constraints:

e a constant or adaptive amount (depending on the number
and/or the magnitude of the violations) penalizes the eval-
uation of an out-of-bounds individual. This approach may
slow down the convergence when numerous individuals
are likely to violate the boundary constraints.

e the out-of-bounds components of an individual are reini-
tialized within the admissible bounds. A random reini-
tialization within the domain may prevent individuals to
reach minimizers located near the bounds. We use the
bounce-back method (Price, Storn, and Lampinen) to re-
place an out-of-bounds component y; with a component

(%0)

that lies between x \ and the admissible bound:

() _ xyO) + rand(0, 1)(l; — m;io)), ify; <l @)
Yi = xyO) + rand(0,1) (u; — my(’)), ify; > uj

DE’s individuals are evaluated using the real-valued ob-
jective function in round-to-nearest mode. This value may
be lower than the (theoretical) exact evaluation, therefore it
should not be used to update f at risk of losing a rigorous
enclosure of the global minimum. An evaluation of the inter-
val extension is therefore required whenever the best known
evaluation is improved. The upper bound of the image inter-
val computed by IA is stored in the shared memory, which
guarantees certified bounds on the solution.

4.2 1IBCA thread

A good upper bound provided by the DE is retrieved at each
iteration from the shared memory and compared to the cur-

rent best upper bound f. If the latter is improved, it is up-
dated to prune more efficiently parts of the search-space that
cannot contain a global minimizer. We use the following
steps in our Interval Branch and Contract algorithm:

Selection rule The priority with which boxes are in-
serted in the queue £ determines the exploration strategy
of the search-space: smallest lower bound first, largest box
(breadth-first search), stack (depth-first search). Our IBCA
uses the location of the current best solution X to extract
from L the box X for which the distance to X is maximum:

n

dist(X, %) =Y €(X;, %) (5)
=1
Ti=X;, ifX; <
where €;(X;, #;) = ¢ Xi — 2;, ifz; <X, (6)
0, otherwise

It is worth noticing that the order in which the remain-
ing boxes are processed has no incidence whatsoever on the
convergence when the DE thread finds the global optimum,
since the rest of the domain is to be exhaustively processed
without updating ' f. However, we have observed that our
heuristic maintains the lowest queue size S among the afore-
mentioned strategies that limits the cost of insertion and ex-
traction (both in O(log S)) of boxes from the L.

Midpoint test If (i (X)) improves the best found upper
bound f of the global minimum, f and Z are updated.

Cut-off test If f <
cannot contain a solution that improves f by more than €.

(X) — €y, X is discarded since it

Bounding rule Computing a sharp lower bound of f(X)
is a crucial issue in Branch and Bound algorithms to de-
termine whether X may contain a global minimizer. In the
following, we introduce standard alternatives to the natu-
ral interval extension for bounding the range of a differen-
tiable univariate function f. Let F’ be an interval extension
of f/, X an interval and x € X. The zeroth-order Taylor
expansion with Lagrange remainder of f(z) at the point
c € Xis f(x) = f(e) + (x — ) f'(§). Since ¢ € X,
(&) € f'(X) c F'(X). The expansion holds for all
x € X, therefore

f(X) CF(X) = f(e) + (X — o) F'(X) ©)

In practice, f(c) is also computed using IA to bound round-
ing errors. We denote F'r the multivariate Taylor interval
extension, with ¢ € X:

Pr(X) =F(c)+ > (Xi —c)Gi(X1,...,X,)  (8)

The quality of inclusion of equation 8 depends on the
point c. The Baumann centered form, for which Baumann
(1988) gave an analytical expression of the optimal center,
computes the greatest lower bound of f(X):

(€))

Fp(X) = Fleg) + Y w(Xo)

%



where 2L (X) € G4(X) = [L;,Ui], cp = (c1,. .., ¢,) and
¢; = (XiU;— X;L;)/(U; — L;). Note that computing F'(cp)
offers the possibility of updating f (see midpoint test).

The order of approximation k of an interval extension

F' indicates the speed at which the interval inclusion ap-
proaches the exact range of f:

w(F(X)) — w(f(X)) = O(w(X)") (10)

Centered forms have a quadratic order of approximation
(k = 2), while that of natural interval extensions is only
linear (k = 1). Consequently, the enclosure Fig(X) of f(X)
becomes sharper when the width of X approaches 0. In prac-
tice, it is not known when the Baumann form computes a
better inclusion than the natural interval extension. To ex-
ploit the quadratic convergence of Fp, we set an arbitrary
threshold o on the width of the boxes, under which the Bau-
mann inclusion is computed in addition to the natural inclu-
sion. Intersecting both inclusions may yield a tighter enclo-
sure of the image:

F(X)

(11)

_Jmax (Fy(X), Fp(X)) ifw(X) <o
o otherwise

Fn(X)
For small boxes, the additional information supplied by the
lower bound is generally worth the cost of extra computa-
tions (see results in section 5.2).

Termination rule Parameters €, and €y determine the de-
sired precision of the solution. X is stored in the solution
list S when w(X) < ¢, or w(F (X)) < €;. Otherwise, X
is bisected, and the insertion priority is computed for the re-
sulting subboxes X; and Xs.

Bisectionrule X is bisected along one dimension after an-
other (round-robin method for each individual box). The two
resulting subboxes are inserted in £ to be subsequently pro-
cessed.

4.3 Update thread

The individuals of the EA are periodically projected within
the admissible domain to avoid exploring infeasible parts of
the search-space. If an individual x lies outside the remain-
ing domain, it is randomly reinitialized within the closest
box X:

o rand( X, m(X;)), ifz; <X; (12)
~ \rand(m(X3), X;), it X; <z

S Experimental results

In this section, we demonstrate the efficiency of our algo-
rithm on two standard, difficult examples:

1. We compute the optima for the Michalewicz function up
to 75 variables while the best known results were only
computed for up to 50 variables. We then prove the opti-
mality of these solutions, while optimality of the solutions
had currently only be proven up to 12 variables. Last, we
present an improvement of Adorio formula regarding the
putative value of optima of Michalewicz function for all
dimensions with an R? = 0.9999999133.

2. We prove that the currently putative solution to the
Lennard-Jones 5 atoms cluster problem is the global opti-
mum, a result which had up to now never been proved.

5.1 Michalewicz function

The Michalewicz function (Michalewicz 1996) is a highly

multimodal function (n! local optima) with domain [0, 7r]™.
2

fal) = - gsinm) [sinﬁjj ' >] T

The best found solutions for up to 50 dimensions are given
in (Mishra 2006) using a repulsive particle swarm algorithm:
fio = —9.6602, f5, = —19.6370, f3, = —29.6309, fZ, =
—49.6248. Very few results regarding deterministic methods
are available: Alliot et al. proved the optimality of the solu-
tion for n = 12 with precisions €, = 1073 and ¢; = 10~ %in
6000s: f; = —11.64957. Our advanced version of the co-
operative algorithm significantly accelerates the proof of op-
timality: The convergence on the same problem is achieved
after 0.03s. The proved minima! for n = 10 to 75 with pa-
rameters are presented in table 1.

n fn n In

10 -9:66015171564 || 50 -49.62483231828
20 -19.63701359935 || 60 -59.62314622857
30 -29.63088385032 || 70  -69.62222020764
40  -39.62674886468 || 75 -74.62181118757

Table 1: Proved minima of Michalewicz function

As an example, a comparison between DE alone, IBCA
alone and our hybrid algorithm for n = 20 illustrates the
gain in performance achieved by our approach: The DE al-
gorithm alone converges toward a local optimum —19.6356,
the IBCA alone achieves convergence in 64s and the hybrid
algorithm in 0.09s.

Table 2 presents the average and maximum CPU times (in
seconds) and average number of evaluations (NE) of f, F
and its partial derivatives, after 100 executions of the hybrid
algorithm for n = 10 to 75.

n Av. time Max. time NE f NE F NE G;
10 0.02 0.02 14,516 851 6,480
20 0.1 0.1 26,055 1,549 22,972
30 0.4 0.4 56,851 3,357 74,201
40 1.1 1.4 143,639 7,894 236,079
50 3.1 4 343,237 16,497 659,877
60 14.9 19.6 1,293,570 56,724 2,857,623
70 74.2 116.6 5,009,374 194,080 11,750,245
75 127.0 189.5 9,361,016 358,662 23,395,437

Table 2: Average values after 100 executions

It is claimed in (Adorio 2005) that f = —0.966n. An
interpolation of f; over [10, 75] rather suggests that f; =
—0.9995371232n + 0.3486088434 (R? = 0.9999999133).

"Parameters of the algorithm were: e, (precision, width of box)
= 10719, €s (precision, width of image) = 1071°, & (Baumann
threshold) = 0, N P (population size) = 20 to 100, W (weighting
factor) = 0.7, C R (crossover rate) = 0.



5.2 Lennard-Jones clusters

The Lennard-Jones potential is a simplified model proposed
by (Jones 1924) to describe pairwise interactions between
atoms. It is deemed as an accurate model of clusters of no-
ble gas atoms. Given r;; the distance between the centers of
atoms ¢ and j, the pairwise potential is defined by

1 1
v(ri;) =4 (7’21]2 - TZGJ) (14)
Finding the most stable configuration of a cluster of £ atoms

amounts to minimizing:
k

Fn(x) =D 0 (@i —25)2 + (i — ;)% + (2 — %)) (15)

i<j

where (z;,y;, z;) are the Cartesian coordinates of atom i.
A simple way do reduce dependency in equation 14 is to
complete the square so that r;; occurs only once (equation
16). Sharper bounds are therefore computed in equation 15.

2
1 1 1 1
3 13 9

The number of effective dimensions of the problem can
be reduced, as the cluster configuration is invariant under
rotation and translation. In order to break part of the symme-
tries, we use the following boundary constraints and reduce
the size of the problem to n = 3k — 6 components:

T1 =Y = 21— 0

T2 2 0,y2 =20 =0
I3 2 0,y3 2 0,23 =0
T4 2> 0,94 > 0,24 >0

In spite of its seeming simplicity, the Lennard-Jones ob-
jective function is non-convex and highly combinatorial.
Numerical experiments suggest that the number of local
minima is O(e™) (Locatelli and Schoen 2003). For n < 4,
the atoms may be optimally positioned on the vertices of a
regular tetrahedron so that the pairwise potential v is min-
imal. Proof of optimality for > 5 however remains an
open problem (Vavasis 1994). Numerous authors have found
putative global minima using a wide range of approximate
techniques (Northby 1987; Hoare and Pal 1971; Leary 1997;
Wales and Doye 1997). The best known solutions are avail-
able at http://physchem.ox.ac.uk/"doye/jon/structures/LJ.

The best known solution for the Lennard-Jones clus-
ter of 5 atoms (9 variables) is —9.103852415708 and the
corresponding solution is a triangular bipyramid (Sloane et
al. 1995). Our hybrid algorithm proves the global minimum
f& = —9.103852415707552 ‘with domain (x;,y;,2;) €
[—1.2,1.2]. The coordinates of one optimal solution’ are
presented in table 3.

The computation times and function evaluations are given
in table 4 after 100 executions. The DE algorithm finds the
global optimum f# after 764 iterations (0.11s), but the proof
of optimality is only achieved by the IBCA after 1436s.

a7

Parameters of the algorithm were: €, (precision, width of box)
=109 ¢ ¢ (precision, width of image) 1079, o (Baumann thresh-
old) = 10~*, NP (population size) = 40, W (weighting factor)
= 0.7, CR (crossover rate) = 0.4.

Atom T Y z
1 0 0 0
2 1.1240936 0 0
3 0.5620468  0.9734936 0
4 0.5620468  0.3244979  0.9129386
5 0.5620468  0.3244979  -0.9129385

Table 3: Coordinates of optimal solution (5 atoms)

Average time (s) 1436s
Maximum time (s) 1800s
Maximal queue size 46

F' evaluations (IBCA) 7,088, 758
V F evaluations IBCA) 78,229,737
f evaluations (DE) 483,642,320
F' evaluations (DE) 132

Table 4: Convergence results after 100 executions (5 atoms)

Effect of the lower bound on the pruning step We used
the Baumann centered form F'p (see section 4.2, paragraph
Bounding rule) to try to compute a greater lower bound
of f than that computed by the natural interval extension
Fp. The lower bound of Fp was computed for 144,642
boxes whose width was lower than the threshold o. All
of them improved the lower bound computed by F, and
121, 333 boxes (84%) were discarded using the cut-off test.
The maximum gap computed is Fiy (X) ~ —9.103968 and

Fp(X) ~ —9.103848. We have Fy(X) < fZ < Fp(X),
which proves thatthe box cannot contain a global minimizer.

6 Conclusion

Extending the basic concept of Alliot et al., we have pre-
sented in this paper a new hybrid algorithm in which a
stochastic Differential Evolution algorithm (DE) cooperates
with a deterministic Interval Branch and Contract Algorithm
(IBCA). The DE algorithm quickly finds incumbent solu-
tions that help the IBCA to improve pruning the search-
space. Domain reduction performed by the IBCA is used
to project DE individuals trapped in local optima into the
remaining domain.

We have demonstrated the efficiency of this algorithm
on two very difficult and different examples: previously un-
known results (for stochastic and deterministic methods) for
the multimodal Michalewicz function have been computed,
and the optimality for the open Lennard-Jones cluster prob-
lem with 5 atoms has been certified. This cooperative al-
gorithm significantly outperforms both stochastic and deter-
ministic existing optimization algorithms on these examples,
and is likely to outperform them on other similar problems
whose derivatives are numerically computable.
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