
BioMed CentralAlgorithms for Molecular Biology

ss
Open AcceResearch
A phylogenetic generalized hidden Markov model for predicting 
alternatively spliced exons
Jonathan E Allen*1,2 and Steven L Salzberg1,3

Address: 1Center for Bioinformatics and Computational Biology, University of Maryland Institute for Advanced Computer Studies, University of 
Maryland, College Park, MD 20742, USA, 2Department of Computer Science, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 
21218, USA and 3Department of Computer Science, University of Maryland, College Park, MD 20742, USA

Email: Jonathan E Allen* - jeallen@umiacs.umd.edu; Steven L Salzberg - salzberg@umiacs.umd.edu

* Corresponding author    

Abstract
Background: An important challenge in eukaryotic gene prediction is accurate identification of
alternatively spliced exons. Functional transcripts can go undetected in gene expression studies
when alternative splicing only occurs under specific biological conditions. Non-expression based
computational methods support identification of rarely expressed transcripts.

Results: A non-expression based statistical method is presented to annotate alternatively spliced
exons using a single genome sequence and evidence from cross-species sequence conservation.
The computational method is implemented in the program ExAlt and an analysis of prediction
accuracy is given for Drosophila melanogaster.

Conclusion: ExAlt identifies the structure of most alternatively spliced exons in the test set and
cross-species sequence conservation is shown to improve the precision of predictions. The
software package is available to run on Drosophila genomes to search for new cases of alternative
splicing.

Background
High-throughput sequencing of expression data provides
compelling evidence that the long held hypothesis "one
gene produces one protein" is far less common than pre-
viously thought. Surveys from the human genome esti-
mate that as many as 70% of human genes produce more
than one transcribed form [1]. Examples are found in a
variety of metazoan organisms confirming that a signifi-
cant number of genes produce multiple distinct tran-
scripts [2,3]. Alternative splicing is an important
biological mechanism for producing multiple distinct
transcripts from a single gene locus. Exon intron junctions
are pieced together to produce differing mRNAs. In some
cases alternative exon splicing leads to different functional

proteins thereby increasing protein diversity. In other
cases an alternatively spliced exon leads to non-functional
mRNA, effectively regulating gene expression [3].

Given an input genomic sequence and the locations of
gene regions, our goal is to find the functional exons orig-
inating from each gene locus, identifying their respective
amino acid codons and splice sites. Figure 1 shows exam-
ples of alternatively spliced exons examined in this study:
intron retention (IR), cassette exon (CE), and multiple
splice sites (MS). Also considered are constitutive exons
(CS), defined to be an exon included with the same splice
site boundaries in all functional mRNA forms.
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Related work
Gene expression provides evidence for large numbers of
alternatively spliced genes [4-10]. The most reliable high
throughput evidence for alternative splicing comes from
full length cDNAs, which are limited in coverage across all
biological states. Expressed Sequence Tags (ESTs) supple-
ment the coverage of full length cDNAs but still fail to cap-
ture all expressed forms [11,12]. Genomic sequence
patterns can potentially be used to identify alternative
splicing in less commonly expressed genes and recent
work has focused on developing computational methods
to predict alternative splicing without direct evidence of
gene expression. This work is divided into two types:
explicit and implicit alternative splicing prediction.

Explicit alternative splicing prediction
Sorek et al. looked at cassette exons in human and mouse
and found a striking pattern of increased intron conserva-
tion distinct from constitutive exons [13]. A list of features
were compiled including exon length, sequence conserva-
tion and k-mer counts [14,15], which were used in a sup-
port vector machine (SVM) [15] to classify cassette and
constitutive exons. Yeo et al. developed a regularized
least-squares classifier, called ACESCAN [16], to identify
cassette exons in human/mouse orthologs using a similar
feature set. A SVM cassette exon classifier was developed
for Caenorhabditis elegans using only single species features
and was extended to predict cassette exons in intron
sequence [17]. Drosophila melanogaster exons matched to
Drosophila pseudoobscura orthologs with conserved flank-
ing intron sequence were observed by Philipps et al. to be
enriched for alternatively spliced exons [18].

Implicit alternative splicing prediction
An alternative approach is to predict multiple overlapping
gene structures, or a single gene structure overlapping
existing alternative annotation. Explicit features of alter-
native splicing are not scored, but by virtue of having mul-
tiple overlapping high scoring gene structures, alternative
splicing is implied. One method sampled paths [19] in
the generalized hidden Markov Model (GHMM) of the
single isoform gene finder SLAM [20]. Re-occurring over-
lapping high scoring parses were reported as candidates
for alternative splicing. Another approach is to find an
exon splicing pattern with the highest scoring alignment
to profile hidden Markov models (profile-HMMs) [21].
The human genome was searched for cassette exons and
intron retention events using a reference annotation [22].
Predicted gene structures with scores exceeding the refer-
ence gene structure were inferred to be examples of alter-
native splicing.

The work most similar to the model introduced in this
article is the pair-HMM UNCOVER [23], which finds
exons in sequence annotated as introns and was tested on
human/mouse intron pairs. Unlike the cassette exon clas-
sification methods [15-17], models were trained using
examples of protein coding exons without explicitly dis-
tinguishing between constitutive exons and cassette
exons. Since the input sequence is assumed to be an
intron, predicted exons are inferred to be alternatively
spliced.

The method presented in this article extends the GHMMs
used in single isoform gene finding [24] to explicitly
model features of alternative and constitutive exons. The
features of the explicit alternative splicing prediction
methods: k-mer counts, exon lengths, and sequence con-
servation are used to predict multiple splice sites and
intron retention events along with cassette exons and con-
stitutive exons. Cross-species sequence conservation is
incorporated using components of the single isoform
phylogenetic HMM gene finders [25-27]. The phyloge-
netic shadowing principle is used to assume a multiple
sequence alignment can be obtained from closely related
species [28]. In contrast, the pair-HMM method simulta-
neously predicts a pairwise alignment and the exon struc-
ture making it potentially better suited to incorporate a
difficult to align, more distantly related organism. Conser-
vation from greater evolutionary distances may improve
discriminative power in identify functional nucleotides,
but with the potential trade off of detecting a smaller set
of conserved alternative splicing events [29].

The remainder of the article describes our computational
prediction model and reports on prediction accuracy in
Drosophila melanogaster.

Three forms of alternative splicing: Intron Retention (IR), Cassette Exon (CE), and Multiple Splice sites (MS)Figure 1
Three forms of alternative splicing: Intron Retention (IR), 
Cassette Exon (CE), and Multiple Splice sites (MS).
Page 2 of 13
(page number not for citation purposes)



Algorithms for Molecular Biology 2006, 1:14 http://www.almob.org/content/1/1/14
Results and discussion
Graphical model of alternative splicing
The prediction model is designed to predict multiple over-
lapping exons in a sequence believed to contain a single
exon or intron, rather than the complete gene from start
codon to stop codon. Input is expected to be a target
sequence previously annotated by a single-isoform gene
annotation tool such as a gene finder, cDNA alignment or
some other annotation source. In cases where the input
sequence contains untranslated regions, it is assumed that
the coding boundary is known. Thus, the problem of
translation start/stop site prediction is not addressed here.

Alternative splicing increases the number of candidate
acceptor/donor pairs compared to the constitutive exon
equivalent. Figure 2 shows four candidate splice sites, an
acceptor site a0, and three donor sites d0, d1, and d2. In a
single isoform gene finder, only one of the four exons
labeled constitutive in Figure 2 represent a viable exon.
Allowing for alternative splicing means all three donors
sites are potentially functional. For example, in Figure 2,
the eighth candidate splicing type from the top has two

functional donor sites d0(marked MD1) and d1 (marked
MD2), leading to two different functional exons. More
than two functional donor or acceptor sites can occur
leading to a model of unbounded size. The combinatorial
possibilities are reduced to a finite number using one sym-
bol for each splice type to represent functional splice sites
over 2 in number. For example, MDN is the symbol used
to represent the third functional donor site, d2 in Figure 2.

Donor sites are divided into five types: single functional
constitutive donor SD, alternative donor for cassette
exons CD and multiple functional donors MD1, MD2,
and MDN. MD1 is the left most functional donor, MD2 is
the donor immediately downstream of MD1, and MDN
represents additional downstream donors. The classifica-
tion scheme similarly extends to acceptor sites: SA (single
constitutive acceptor), CA (acceptor for cassette exon),
MA1 (first multiple acceptor), MA2 (second multiple
acceptor), and MAN (multiple acceptors greater than 2).

The intron retention splice site labeled GT in Figure 1 (the
5' end of the retained intron) forms the basis of the splic-

Alternative and single isoform exon candidatesFigure 2
Alternative and single isoform exon candidates. Four splice sites are shown, one acceptor a0, and three donor sites, d0, d1, and 
d2, and the begin (B) and end (E) of the input sequence. There are four candidate constitutive exons (Constitutive Exon), three 
candidate cassette exons (Cassette Exon), and candidate exons with multiple functional donor sites (Multiple Splice Site Exon). 
See text for a description of the splice types: single acceptor (SA), cassette acceptor (CA), single donor (SD), cassette donor 
(CD), multiple donor 1 (MD1), multiple donor 2 (MD2), and multiple donor above two in number (MDN).
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ing types: SD-IR, MD1-IR, MD2-IR, and MDN-IR. The
intron retention acceptor labeled AG in Figure 1 (3' end of
the retained intron) forms the basis for the splicing types:
SA-IR, MA1-IR, MA2-IR, and MAN-IR. There are five end
of sequence conditions: beginning of the sequence (Beg),
end of a constitutive intron (END-INTRONC), end of an
alternative intron (END-INTRONA), end of a constitutive
exon (END-EXONC), and end of an alternative exon
(END-EXONA).

Splice sites and end of sequence conditions are called sig-
nals and ordered signal pairs define the exon/intron inter-
vals in an alternative exon splicing model. Figure 3 shows
a portion of the model and two example sets of states
aligned to genomic sequence. The model in Figure 3 pre-
dicts alternative splicing in internal exons for the three
splicing types in Figure 1 plus constitutive exons. The
states represent sequence intervals between pairs of sig-
nals. The top right example in Figure 3 shows an initial
"Upstream Constitutive Intron" state between signal pair
(Beg, SD), which marks an intron proximal to a constitu-
tive splice site followed by states for each downstream
exon interval: "Internal First Exon of IR" (SD,SD-IR),
"Retained Intron" (SD-IR,SA-IR), and "Internal Last Exon
of IR" (SA-IR,SD), ending in the "Downstream Constitu-
tive Intron" state (SD,END-INTRONc). The bottom right
example in Figure 3 shows "Upstream Alternative Intron"
(Beg,MA1), "Multiple Acceptor 1" (MA1,MA2), "Single
Donor" (MA2,SD), and "Downstream Constitutive
Intron" (SD, END-INTRONC). States not shown in Figure

3 model rarer forms of splicing, including combinations
of alternative splicing events and splicing in exons at the
end of genes. The complete model is given in the Methods
section.

Phylogenetic generalized hidden Markov model definition
A phylogenetic generalized hidden Markov model
(PGHMM) extends a model described in the single iso-
form gene finder Shadower [27]. The method described
here models higher order nucleotide dependencies and is
applied to the alternative exon splicing model introduced
in Figure 3. An input multiple sequence alignment X =
S0,..., Sm includes the target sequence S0 and m informant
species. X[k] is the kth column in X and X[i,j] are the col-
umns from position i to j inclusive, the PGHMM is
defined to be a 7 tuple, (Q, π, Σ, R, ψ, O, L):

• Q – the set of states with states q, q'. ∈ Q

• Pπ(q) – the probability of beginning in state q

• Σ – the set of nucleotides {A, C, G, T} emitted in the
model

• PR(q|q') – the transition probabilities from state q' to
state q

• ψ – the set of phylogenetic parameters

Left image shows a portion of the graphical model for alternatively spliced exonsFigure 3
Left image shows a portion of the graphical model for alternatively spliced exons. The right side of the figure shows two exam-
ples of parsing a target sequence. The top right example parses an intron retention sequence and the bottom right example 
parses a multiple splice site sequence. Blue states output partial subsequence of alternatively spliced exons, beige states are 
exons beginning with an acceptor and ending with a donor. Green states are introns.
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• PO (X [i, j]|q, ψ) – the probability of emitting sequence
alignment columns from i to j in state q using phyloge-
netic parameter set ψ

• PL, q (j - i + 1) – the probability of the state q emitting the
series of columns of length j - i + 1

The parse of multiple sequence alignment X is a series of
partitions t = (t0, t1, ..., tn), with state qi outputting a con-
tiguous series of columns in X from position bi to ei inclu-
sive in partition ti = (bi, ei, qi). The parse spans the entire
multiple sequence alignment X so that bi + 1 = ei + 1. The
joint probability between parse t and sequence X is:

Each interval from b to e begins and ends with a signal
covering a fixed length window, Sigb and Sige respectively.
The donor signal window width Wdon, is set to 9 for all
donor types (SD, CD, MD1, MD2, MDN, SD-IR, MD1-IR,
MD2-IR, MDN-IR). When the window covers columns X
[k, k + 8] from k to k + 8 the consensus splice site is in sub-
sequence S0 [k + 3, k + 4] = GT. The acceptor window
width Wacc, is set to 24 for all acceptor types (SA, CA, MA1,
MA2, MAN, SA-IR, MA1-IR, MA2-IR, MAN-IR), covering
columns X[k - 23, k] from k-23 to k with consensus splice
site in subsequence S0[k - 3, k - 2] = AG. The beginning and
ending sequence signals set the window parameter WSig to
0 since non splice site signals are not explicitly modeled.

State q emitting columns X[b, e] from b to e models the
downstream signal Sige but excludes the upstream signal
Sigb. For example, when q = Multiple Donor 1, q outputs
columns between two donor sites, Sigb = MD1 and Sige =
MD2. The exon interval is scored from b to e-Wdon - 1
inclusive and the donor columns are scored from e - Wdon
to e inclusive. The upstream donor site window MD1
spans the interval b - Wdon - 1 to b - 1 and is scored in the
previous state.

The probability of a state emitting a series of columns
becomes:

The probability of emitting each column in the alignment
is defined by a sequence model returned by SelectModel(X,

e, k, z, q, ψ). The current position k in alignment X, the end
position of the scored interval (e), current state q, protein

coding phase z, and phylogenetic parameters ψ determine

the choice of sequence models. If q is an exon state and k
is within the coding region, the coding phase z is 0, 1 or 2
and -1 otherwise. When q is an exon state and k is outside
the coding region, an untranslated exon region is implied.
The sequence models are divided into three "template"

categories, , Mcodon, and Mnon-coding and an instance of

one of these three types is returned by the function:

SelectModel (X, e, k, z, q, ψ) =

In theory, each state could maintain separate sequence
models. For example, the "Internal First Exon of IR" state
could model codon usage separately from the "Internal
Last Exon of IR" state. In practice, this results in far too
many parameters to estimate given training data sizes.
Instead the states are tied to 10 candidate sequence mod-
els returned by SelectModel. The models are listed with the
analogous Markov models commonly used in single iso-
form ab initio gene finders.

• Mnon-coding (X, k, ψ). 3rd order homogeneous Markov
model: P(S0[k]|S0[k - 3, k - 1])

- MAUTR(X, k, ψ) – alternative 5'/3' untranslated
region (AUTR)

- MCUTR (X, k, ψ) – constitutive 5'/3' untranslated
region (CUTR)

- MAI (X, k, ψ) – alternative intron (AI)

- MCI (X, k, ψ) – constitutive intron (CI)

• Mcodon (X, k, z, ψ). 3rd order inhomogeneous 3-periodic
Markov model: Pz (S0[k]|S0[k - 3, k - 1])

- MAE (X, k, z, ψ) – alternative exon (AE)

- MCE (X, k, z, ψ) – constitutive exon (CE)

• Mdon (X, k, e, ψ). 1st order inhomogeneous Markov
model (WAM): P9-(e - k) (S0[k]|S0[k - 1])

- MSD (X, k, e, ψ) – constitutive/single donor (SD)

- MAD (X, k, e, ψ) – alternative donor (AD) (covers
all alternative donor types)
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• Macc (X, k, e, ψ). 1st order inhomogeneous Markov
model (WAM): P24-(e - k) (S[k]|S[k - 1])

- MSA (X, k, e, ψ)- constitutive/single acceptor (SA)

- MAA (X, k, e, ψ)- alternative acceptor (AA) (covers
all alternative acceptor types)

From Markov models to evolutionary models
The key difference between our implementation and a sin-
gle isoform ab initio gene finder is two fold: 1) separate
models are maintained for the two splicing types: alterna-
tive and constitutive, and 2) the nucleotide dependencies
are modeled using an evolutionary framework. The choice
to separate sequence models for the two splicing types is
motivated by the previous work explicitly classifying alter-
natively spliced exons and by the hypothesis that a splice
site can be activated or deactivated with proximal splicing
factors binding to the pre-mRNA sequence to interact
directly (or indirectly) with the Spliceosome. The presence
of splicing factors in conjunction with the characteristics
of the splice site is expected to determine splice site usage.
There is growing evidence that many alternative splicing
events follow this model [30,31]. 

Each sequence model estimates the probability of emit-
ting column X[k] using a phylogenetic tree. Figure 4 shows
a schematic of the phylogenetic tree for four Drosophila
species used in testing. The goal is to compute the proba-
bility of the observed column having evolved from a com-
mon ancestral sequence. For the tree in Figure 4, assume
the ancestral base at the root ("Ancestor 1") to be A and
the descendant node ("Ancestor 2") to be C. The probabil-

ity of A evolving to C is computed using a nucleotide sub-
stitution model. The HYK model [32] was chosen for the
use of three features: distinguished transition/transver-
sion mutation events (assumed to be a fixed parameter),
a nucleotide equilibrium model, and the evolutionary
time interval defined by the tree branch length. The prob-
ability of emitting column X[k] is found by computing, in
linear time with respect to the number of nodes in the
tree, the probability of all possible ancestral sequences
having evolved into the observed column using the
Felsenstein phylogenetic tree scoring procedure [33].

The nucleotide equilibrium parameters of the HYK model
are naturally suited to incorporate the nucleotide bias
found in the different sequence models (e.g. donor,
codon, etc.). With a multiple sequence alignment as
input, an intuitive extension to the ab initio Markov model
is to use the preceding o bases from each input sequence
to estimate the likelihood of the current nucleotide
(where o is the order of the Markov model). For example,
in Figure 4, estimating the probability of nucleotide C at
"Ancestor 2" having evolved from nucleotide A at "Ances-
tor 1", should reflect the nucleotide equilibrium of D. mel-
anogaster and D. simulans, given the o previous bases in the
input alignment for the two species. Similarly, estimating
the probability of the root ancestral base being A (Ances-
tor 1) should reflect the nucleotide equilibrium among all
four species given the o previous nucleotides in the input
alignment from all four species. If dv is the number of

descendants at node v, the number of parameters is

 (v enumerating over all nodes in the tree)

leaving too many parameters to reliably estimate, given
the current limits on training sizes.

Frequency counts obtained from each organism inde-
pendently, reduce the parameter size for each sequence
model to (m + 1) × 4o + 1 (where m + 1 is the number of

organisms). Let  be the sequences descendant

from node v. If c( [k - o, k - 1], n) returns the number of

times each nucleotide n ∈ {A, C, G, T} was observed to

follow the substring [k - o, k - 1] at position k in a train-

ing alignment, the nucleotide equilibrium at node v for
each nucleotide n is:

Tree branch lengths are assumed to be fixed, but func-
tional sequence elements are expected to exhibit a slower
rate of substitution. Each sequence model maintains sub-
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Phylogenetic tree for four species of DrosophilaFigure 4
Phylogenetic tree for four species of Drosophila. Each branch i 
has a branch length of bi.
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stitution rates to either expand the branch lengths of the
tree (for rates greater than 1) or contract the branch
lengths. Longer branch lengths have the effect of allowing
mutations to accumulate in a column without incurring a
scoring penalty, whereas, shorter branch lengths reward
perfectly preserved columns. The codon, intron, and
untranslated region states use two substitution rates, one
rate for when the input column is conserved (no muta-
tions observed) and a second rate when the column is not
conserved. If a mutation is observed in a codon where the
encoded amino acid is preserved, the higher substitution
rate is selected to better accept the mutation. In the case of
splice sites, each base is assumed to be subject to selective
pressure and a single rate is used. An optimal parse of
multiple sequence alignment X is found taking the log
ratio of a state emitting the columns in X versus an equiv-
alent model assuming all nucleotides are equally proba-
ble (the "background" state). Using a dynamic
programming matrix D(j, q) initialized to

entries for each nucleotide j and state q are assigned a
value:

Exons are recovered from the parse ending at the highest
scoring entry maxq D(N - 1, q) where N is the length of X.
The runtime of the algorithm is O(|Q|2 × N2) where |Q| is
the number of states in the model. The PGHMM can easily
be transformed to a single species alternative exon predic-
tor by assuming a single input sequence and single node
phylogenetic tree. The evolutionary models reduce to the
single sequence Markov model equivalents and are used
to measure the impact of sequence conservation on pre-
diction performance.

Experiments
The alternative exon splicing model was implemented in
a program called ExAlt and tested on a target genome –
Drosophila melanogaster using three informant species:
Drosophila simulans, Drosophila yakuba, and Drosophila
erecta. This study focuses on the three most closely related
species to D. melanogaster (with available genomic data)
to avoid using inaccurate multiple sequence alignments,
which can occur when dealing with more distantly related
species. Testing is based on 1339 D. melanogaster exons
from 1160 gene loci. 572 of the original 600 alternatively
spliced test exons (95%) were aligned to at least one of the
three informant species and 767 of 777 constitutive exons
(99%) were aligned to at least one of the three informant

species. As an option, ExAlt predicts exons in the absence
of alignment evidence; however, the candidate exons with
no cross-species sequence conservation left too small a
data set (3% = 38/1377) to make meaningful compari-
sons between performance on exons with and without
detectable cross-species conservation. Therefore, the
remaining 97% of the exons showing some cross-species
sequence conservation were selected to evaluate the
impact of sequence conservation on prediction perform-
ance, with the understanding that additional work will be
needed (as more data becomes available) to analyze pre-
diction performance in the non-conserved exons.

The goal of the experiments was to test ExAlt's ability to
take a single input sequence presumed to contain an exon
and correctly predict all of the exon/intron boundaries.
The experiments were constructed to measure the impact
of using gene structure information and cross species
sequence conservation on prediction performance. ExAlt
outputs exon coordinates and exon splicing type labels.
60% of the data (selected at random) was used to evaluate
sequence conservation patterns, training, and testing with
10 fold cross-validation. The remaining 40% was held out
from the initial training and test phase so that once devel-
opment of the system was complete, the software could be
tested on an independent data set and the reproducibility
of the initial performance results verified. The pipeline for
generating the test data is described in the Methods sec-
tion.

Since the absence of evidence for alternative splicing does
not prove the existence of a constitutive exon, a constitu-
tive exon is defined for evaluation purposes to be an exon
from a gene with a single known isoform, where each
splice site is supported by at least 5 ESTs (or other cDNAs)
aligned with 95% identity or higher. The hypothesis is
that these genes have sufficient expression evidence to
predict the presence or absence of alternative splicing.

Sequence conservation
The training set confirmed that splice sites and protein
coding sequence were conserved between D. melanogaster
and each of the three informant species. 99% of the con-
stitutive di-nucleotide splice sites (AG and GT) annotated
in D. melanogaster were found in the matching aligned
informant sequence. Alternative splice sites were less fre-
quently conserved, but only by a small degree, with over
95% of alternative splice sites found in the matched
informant species. Table 1 shows the percentage of exons
with matches to each of the informant species missing a
splice site categorized by exon type. Exons with multiple
duplicate functional splice sites (MS and IR exons) less
frequently shared all splice sites with the informant spe-
cies. In D. simulans for example, 12% of the multiple
splice site exons (MS in Table 1) and 8% of the exons with
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retained introns (IR in Table 1) were missing a splice site.
The lack of conservation in alternative splicing in nearly
every case affects only one exon isoform leaving another
shared exon isoform in place. In the vast majority of cases,
the lack of observed conservation is not due to misalign-
ments and missing sequence, although a small percentage
of cases are affected by this problem.

Prediction performance
ExAlt's prediction accuracy was measured on exons with
an exon counted correct when the predicted left and right
boundary matched the test exon. Internal exons begin
with an acceptor and end with a donor. Initial exons begin
with a transcription or translation start site and end with
a donor site. Terminal exons begin with an acceptor and
end with a transcription or translation stop site. Single
exons begin with a transcription or translation start site
and end with the transcription or translation stop site.
(Single exons in the test were of the intron retention splic-
ing type.) Sensitivity (the percentage of the test exons cor-
rectly detected) and specificity (the percentage of
predicted exons, which match the test set) were used to
measure performance.

Table 2 shows ExAlt's performance on the hold out set
compared to the union of different publicly available gene
predictions and an initial known exon given as input. This
tests the ability to improve an existing annotation, where
an initial exon and reading frame are known. Since many
test sequences contained multiple overlapping exons, one
exon was chosen at random and used as input. Experi-
ments were repeated 10 times and the average taken.
Results are listed in Table 2 as ExAlt-Exon for the ExAlt
predictions informed by cross-species sequence conserva-
tion. Exon sensitivity and specificity are high since at least
one predicted exon matched the test exon. For example, in
the case of multiple splice site exons with two overlapping
exons, a "naive" program predicting only the input exon
would achieve 50% sensitivity and 100% specificity.
When only a single exon isoform exists the naive program
achieves 100% sensitivity and specificity respectively. For

the results in Table 2 it was important to compare the
decrease in specificity from the naive method in cases
where only a single exon isoform occurs versus the gains
in sensitivity when multiple overlapping exons occur.
Two ab initio single isoform gene finders were included in
the comparison, Augustus [34] and SNAP [35]. Also
included is the single isoform gene finder, N-SCAN [36],
which uses cross-species conservation with Drosophila
yakuba, Drosophila pseudoobscura, and Anopheles gambiae
[37].

The coordinates for start and stop codons were included
as input to ExAlt but were excluded from input to the gene
finders, making it potentially more difficult for the gene
finders to accurately predict initial, terminal and single
exons. Therefore, for the initial exons to be counted cor-
rect, a gene finder was only required to correctly predict
the donor site. For terminal exons to be counted correct, a
gene finder was only required to correctly predict the
acceptor site, and for single gene exons to be counted cor-
rect, a gene finder only needed to predict an overlap with
the known single exon. The gene finders were run on
longer stretches of genomic sequence than ExAlt and have
the added challenging task of determining gene bounda-
ries. A gene finder may predict an initial, terminal or sin-
gle exon to overlap an internal exon in the test set, which
would be counted as an incorrect exon prediction. If the
start and stop codon information were integrated into the
gene finder prediction process, individual prediction per-
formance for the respective gene finders would likely
improve. However, since considerable effort has been
taken to carefully train and tune the gene finders for anno-
tating long stretches of genomic sequence, the current pre-
dictions serve as a reasonable baseline for measuring
differences in prediction performance. Using the input
exon plus the union of all three single isoform gene find-
ers yields more of the correct multiple splice site exons
(71% versus ExAlt's 67%) but at the cost of a large reduc-
tion in specificity (64% versus ExAlt's 94%). In the other
cases, however, ExAlt matches or improves on the per-
formance of the union of multiple gene finders.

Table 3 compares the prediction performance of ExAlt-
Exon in Table 2 to ExAlt predictions using different
parameter settings. The impact of using the gene structure
information as input (ExAlt-Exon) was compared to alter-
natives shown in Table 3 as ExAlt-Frame and ExAlt-
Default. ExAlt-Frame makes predictions without using
exon coordinates as input but is limited to predicting
exons that maintain reading frame consistency with the
rest of the known gene. ExAlt-Default is given no gene
structure information and checks all three possible read-
ing frames before selecting the exons from the highest
scoring reading frame. As expected, starting with an initial
known exon improved overall performance, but even

Table 1: Percentage of D. melanogaster annotated exons missing 
at least one splice site in D. simulans, D. yakuba and D. erecta.

D. simulans D. yakuba D. erecta

CS 2 1 1
CE 1 4 2
MS 10,1 9,0 11,0
IR 8,0 16,2 20,3

Percentages are organized by exon type: constitutive exons (CS), 
cassette exons (CE), exons with multiple splice sites (MS), and exons 
with intron retention (IR). The second number associated with the MS 
and IR rows is the percentage of exons where the non-conserved 
splice site is constitutive (used in all isoforms).
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when gene structure information is precluded from input,
a majority of the exon coordinates were correctly recov-
ered (67% overall).

ExAlt-Exon, ExAlt-Frame, and ExAlt-Default were com-
pared to the respective ab initio equivalent: ExAlt-Exon-ab
initio, ExAlt-Frame-ab initio, and ExAlt-Default-ab initio.
Each ab initio version is the GHMM equivalent to the
PGHMM using only the target D. melanogaster sequence as
input. The multi-species versions of ExAlt in all cases
reduced the number of false positive predictions over the
equivalent ab initio version, with little or no reduction in
sensitivity.

Finally, the trade off between predicting multiple overlap-
ping exons versus predicting at most one exon per test
sequence was measured. With the hold out set comprised
of 57% constitutive exons, 18% MS exons, 17% SE exons,
and 9% IR exons, both single exon prediction versions of
ExAlt (ExAlt-Frame-Single and ExAlt-Default-Single) cap-

tured a large percentage of the exons by simply correctly
predicting one exon per sequence. When ExAlt is given the
coding frame and restricted to predict at most one exon,
an exon is correctly predicted in 94% of the sequences
(ExAlt-Frame-Single in Table 3). Allowing ExAlt to predict
overlapping exons (ExAlt-Frame in Table 3) lowered spe-
cificity to 89% but increased the number of correctly
annotated exons to 72%. The last three rows show single
isoform gene finding performance for N-SCAN, Augustus,
and SNAP, which provided an additional point of refer-
ence to measure how well conventional gene finders per-
formed in the evaluated gene regions.

Prediction performance was much higher in constitutive
exons than the other categories of alternatively spliced
exons. Lack of sequence conservation partly explained the
decrease in specificity. The highest specificity levels in the
training set were found to occur when the two informant
species D. yakuba and D. erecta were available. In the hold
out set, 86% of the constitutive exons matched to D.

Table 3: Exon prediction accuracy using different ExAlt parameter settings.

Constitutive Cassete Multiple Splice Intron Retention All Exons
Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

ExAlt-Exon 100 96 100 89 67 94 61 89 84 94
Ex Alt-Exon- ab initio 100 88 100 85 69 83 70 87 87 84

ExAlt-Frame 96 95 70 80 53 87 48 82 72 89
Ex Alt- Frame- ab initio 97 87 72 74 56 76 48 80 74 82

ExAlt-Frame-Single 96 97 69 85 45 92 31 92 66 94
ExAlt-Default 89 84 58 63 49 77 43 74 67 79

Ex Alt-Default-ab initio 89 75 58 55 50 67 36 58 65 69
ExAlt-Default-Single 89 90 56 66 41 84 28 83 61 85

N-SCAN 87 84 51 80 33 66 31 66 57 78
Augustus 75 77 27 53 27 59 26 57 47 69

SNAP 76 72 42 61 29 56 27 62 50 67

Columns are organized by exon type: Constitutive, Cassette, Multiple Splice, Intron Retention, and all exons counted together (All Exons). Rows 1–
2 show ExAlt performance using an input exon and default parameters from Table 2 (ExAlt-Exon) and no informant species (ExAlt-Exon-ab initio). 
Rows 3–5 show ExAlt performance using an input coding frame with default parameters (ExAlt-Frame), no informant species (ExAlt-Frame-ab 
initio), and at most 1 exon predicted per test sequence (ExAlt-Frame-Single). Rows 6–8 show ExAlt performance using no gene structure 
information with default parameters (ExAlt-Default), no informant species (ExAlt-Default-ab initio), and at most 1 exon prediction per test sequence 
(ExAlt-Default-Single). Output is shown for three single isoform gene finders N-SCAN, Augustus, and SNAP.

Table 2: Prediction performance of ExAlt. Sensitivity (Sens) and Specificity (Spec) are shown for exons.

Constitutive Cassete Multiple Splice Intron Retention All Exons
Sens Spec Sens Spec Sens Spec Sens Spec Sens Spec

ExAlt-Exon 100 96 100 89 67 94 61 89 84 94
N-SCAN-Exon Union 100 86 100 89 65 79 55 78 82 84
Augustus-Exon Union 100 82 100 81 63 77 52 73 81 79

SNAP-Exon Union 100 77 100 79 64 74 51 76 81 77
SNAP+N-SCAN-Exon Union 100 73 100 74 69 68 57 70 83 72

Augustus+N-SCAN-Exon Union 100 79 100 77 68 73 57 68 83 76
Aug.+SNAP+N-SCAN-Exon Union 100 70 100 69 71 64 60 64 84 67

Columns are organized by exon type: Constitutive, Cassette, Multiple Splice, Intron Retention, and all exons counted together (All Exons). Row 1 
shows ExAlt performance using an input exon and default parameter settings (ExAlt-Exon). Rows 2–6 show the union of different combinations of 
three gene finders (N-SCAN, SNAP, and Augustus) plus the input exon. (Aug. = Augustus)
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yakuba and D. erecta sequences compared with 75% of the
alternatively spliced exons. (In the remaining cases some
other combination of one or two informant species were
found.) Thus, in some cases ExAlt could not optimally use
evidence of sequence conservation to limit false positive
predictions. The ab initio versions of ExAlt (ExAlt- Frame-
ab initio and ExAlt-Default-ab initio) also got a smaller per-
centage of cassette exons correct compared to constitutive
exons. Many of the cassette exons were less than 100 bases
long and the single species ExAlt (ExAlt-Frame-ab initio in
Table 3) correctly identified a majority of these exons
(62%). However, short exons (less than 100 bases) made
up 69% of the cases where single species ExAlt did not get
both splice sites exactly correctly. In contrast, all but 1 of
the short constitutive exons were correctly identified.

To ensure that the results in the hold out set represent per-
formance that is expected to be repeatable on similarly
randomly distributed data sets, performance numbers for
the original training set were examined using 10-fold
cross validation and are shown in Table 4. Performance
results among the two test sets differ in sensitivity and spe-
cificity by at most 3%.

Conclusion
Single isoform gene structure input improved precision of
ExAlt predictions. ExAlt reported overlapping false posi-
tive exons in only 4% of the constitutive exons (87% of
the remaining exons were correctly classified as constitu-
tive exons), while identifying nearly two thirds of the
overlapping alternatively spliced exons. With limited gene

structure information, ExAlt detected overlapping exons
with modest increases in false positive predictions. Limit-
ing over prediction in a non-expression based alternative
exon finder proved to be a challenge since multiple over-
lapping sequence intervals are potentially predicted as
exons. The problem is illustrated by the performance of
the ab initio versions of ExAlt, which correctly predicted
overlapping exons, but at the expense of increased over
prediction of splice sites. Supplementing the statistical
sequence models with evidence from cross-species
sequence conservation proved to be an effective strategy
in reducing the number of false positive predictions, while
maintaining sensitivity levels. 

In model species such as Drosophila melanogaster, signifi-
cant effort has gone into providing accurate gene structure
annotations, which account for many of the proteins
present in the cell. With the abundance of alternative
splicing already known to occur, it is likely that evidence
for new examples of alternative splicing will continue to
grow. Therefore, even with the availability of high quality
annotations, there are new variations in gene structure yet
to be discovered and non-expression based prediction
methods such as ExAlt can be used to search for new cases
of alternative splicing.

Methods
Data preparation
Test exons were downloaded from FlyBase [38] using Dro-
sophila melanogaster annotation version 4.2.1. Each gene
locus was partitioned into non-overlapping intervals,
with each interval containing all annotated overlapping
exons. Test exons were selected from transcripts annotated
with the same start/stop codon pair with splice sites
located in the coding region. In a few cases, multiple over-
lapping test exons are spliced to neighboring exons in
such a way that portions of the known exon sequence con-
tain multiple functional overlapping reading frames. Cur-
rently ExAlt assumes the occurrence of a single reading
frame, thus limiting its sensitivity in some cases. We plan
to incorporate explicit prediction of multiple overlapping
reading frames in the near future, to further improve sen-
sitivity on the test set.

An initial set of 606 regions annotated with alternative
splicing were searched for duplicate sequences. WU-
blastn 2.0 [39] was used for an 'all against all' search to
remove repeat sequence when two exons match with an E-
value < 10-21, leaving 600 exon regions. Each remaining
non-redundant exon region was extracted from the origi-
nating genome location with flanking intron sequence of
400 bases (or the length of the adjacent intron, whichever
is shorter). 400 was chosen as a cutoff to limit the poten-
tial for aligning long stretches of poorly conserved intron
sequence, while maintaining reasonably long stretches of

Table 4: ExAlt results on the initial training and testing set in 
percentages.

All Exons
Sens Spec

ExAlt-Exon 82/-2 94/-1
ExAlt-Exon-ab initio 84/-3 86/+2

N-SCAN-Exon Union 82/0 82/-2
Augustus-Exon Union 81/0 81/+2

SNAP-Exon Union 81/0 77/0
SNAP+N-SCAN-Exon Union 83/0 72/0

Augustus+N-SCAN-Exon Union 83/0 75/-1
Aug.+SNAP+N-SCAN-Exon Union 84/0 68/+1

ExAlt-Frame 70/-2 87/-2
ExAlt-Frame-ab initio 72/-2 79/-3
ExAlt-Frame-Single 65/-1 91/-3

ExAlt-Default 65/0 78/-1
Ex Alt-Default -ab initio 65/0 66/-3

ExAlt-Default-Single 60/-1 84/-1
N-SCAN 56/-1 76/-2
Augustus 47/0 71/+2

SNAP 49/-1 67/0

Included next to each measurement is the difference in percentage 
points compared to performance in the held out set in Table 2 and 
Table 3. (Aug. = Augustus)
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sequence to predict alternative splicing patterns. WU-
blastn 2.0 is used to find potential homologs in the three
informant species D. simulans, D. yakuba, and D. erecta.
The D. simulans genome was downloaded from the UCSC
genome browser [40]. The D. yakuba and D. erecta
genomes were downloaded from [41]. (D. simulans and D.
yakuba sequence was generated by the Genome Sequenc-
ing Center, WUSTL School of Medicine and D. erecta
sequence was generated by Agencourt.) The best matching
sequence with an E-value < 10-19 was retained along with
50 bases of flanking sequence for input to the multiple
sequence alignment program muscle [42]. All aligned
sequences were required to differ in length by at most
10% to the query D. melanogaster sequence. N-SCAN and
Augustus predictions were downloaded from the UCSC
Genome browser [43,44] and SNAP predictions were
downloaded from [45]. Branch lengths were obtained
from [46].

Prediction model
Figure 5 shows the model used in performance evalua-
tion. States are included to model splicing patterns in
exons at the beginning and end of genes and to account
for the three possible reading frames and to allow for the
entire sequence to be a coding exon or intron. For exam-
ple, "Alternative Exon Only" is the signal pair (Beg,END-
EXONA) and emits a contiguous coding sequence with no
splice sites. Some candidate alternative splicing events are
excluded from Figure 5. For example, the interval between
the two splice site signals MDN-IR and MA1-IR represents
a retained intron between an upstream exon with multi-
ple functional donor sites and a downstream exon with
multiple functional acceptor sites. While such an alterna-
tive splicing pattern might occur (at least in theory), no
examples were found in the training of ExAlt, thus, there
is 0 probability of entering the state. There were 15 cases
of "rare" alternative splicing types: 8 exons contained
more than 2 donor or acceptor sites, 6 exons classified as
intron retention cases contained multiple splice sites in
one of the exon forms and 1 exon contained both multi-
ple acceptor sites and multiple donor sites. Each exon
form was included in the performance analysis. [47] gives
a more complete survey of complex alternative splicing
patterns.

Gaps in the multiple sequence alignment are treated as
missing data. Maximum likelihood parameter estimation
is used to set parameters for the 10 sequence models and
state transitions. Training consists of iterating through
labeled examples of alternatively spliced exons and con-
stitutive exons. Substitution rates are defined by randomly
selecting values within a range of 0.5 to 2.5 and adjusting
the value to maximize the F-score (=(2 × Sn × Sp)/(Sn +
Sp)) in the training set, where sensitivity (Sn) is the per-
centage of protein coding nucleotides correctly labeled

and specificity (Sp) is the percentage of predicted protein
coding nucleotides correctly labeled.

Availability
ExAlt is implemented in C++ and freely available for
download as an open source package from the ExAlt web
page [48]. All data used in this study is available for down-
load from the ExAlt web page.
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