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Large-scale genetic studies are highly dependent on efficient and scalable multiplex SNP assays. In this study, we
report the development of Molecular Inversion Probe technology with four-color, single array detection, applied to
large-scale genotyping of up to 12,000 SNPs per reaction. While generating 38,429 SNP assays using this technology
in a population of 30 trios from the Centre d’Etude Polymorphisme Humain family panel as part of the
International HapMap project, we established SNP conversion rates of ∼90% with concordance rates >99.6% and
completeness levels >98% for assays multiplexed up to 12,000plex levels. Furthermore, these individual metrics can
be “traded off” and, by sacrificing a small fraction of the conversion rate, the accuracy can be increased to very high
levels. No loss of performance is seen when scaling from 6,000plex to 12,000plex assays, strongly validating the
ability of the technology to suppress cross-reactivity at high multiplex levels. The results of this study demonstrate
the suitability of this technology for comprehensive association studies that use targeted SNPs in indirect linkage
disequilibrium studies or that directly screen for causative mutations.

Complex human diseases are known to have a significant genetic
component. Despite some important successes (Altshuler et al.
2000; Hugot et al. 2001), the elucidation of the underlying ge-
netic determinants have proven resistant to standard methods.
Linkage analysis using affected sib pairs has limited power to
uncover such signals, as each individual functional variant con-
tributes only modestly to disease risk (Risch 2000). Large-scale
association studies that would allow genome-wide mapping in
large collections of cases with matched controls have therefore
been proposed (e.g., Kruglyak 1999; Risch 2000). Some of the
barriers to adopting such strategies, including the need to estab-
lish large-case control populations (Geschwind et al. 2001;
Shmulewitz et al. 2001; Cupples et al. 2003) and develop com-
prehensive SNP resources (dbSNP), have been overcome. In ad-
dition, the International HapMap project (The International
HapMap Consortium 2003) is completing a first draft of a whole
genome haplotype map in the Centre d’Etude du Polymor-
phisme Humain (CEU) population by the end of 2004. The Hap-
Map effort will yield a broad view of the genetic architecture of
human populations and allow for the efficient selection of the
most informative tagging SNPs for subsequent association studies.

The remaining requirement to fully enable large-scale ge-
netic association studies is the development of truly cost-effective

and scalable SNP genotyping technologies. These methods must
allow hundreds of thousands of markers to be efficiently and
accurately scored in thousands of patients. The first generation of
SNP genotyping technologies were based on single amplification
reactions for each locus and were not appropriate for these large-
scale, whole-genome studies. Recent advances have assayed
thousands of random SNPs using ultra high-density wafer hy-
bridizations (Matsuzaki et al. 2004) but will not allow the advan-
tages of the tagging SNP approach to be fully realized because
these technologies will not be able to convert all the informative
tagging SNPs and/or putative functional SNPs into working geno-
typing assays. Multiplexed genotyping technologies that allow
the multiplexing of hundreds of targeted SNPs have recently
been developed based on various versions of the Oligo Ligation
Assay (OLA) (Grossman et al. 1994; Samiotaki et al. 1994; Oliph-
ant et al. 2002). These technologies would still demand a fairly
large infrastructure in order to process the thousands of reactions
necessary per patient.

Here, we describe an advanced Molecular Inversion Probe
(MIP) genotyping technology (Hardenbol et al. 2003) that com-
bines the strengths of all of the above methods. MIP exploits the
advantages of the OLA methodologies but can be more highly
multiplexed due to a unique unimolecular method of action and
an enzymology that combines the specificity of both ligase and
polymerase enzymes. This assay enables the use of >12,000 oligo
probes to simultaneously interrogate human genomic DNA and,
following a single PCR, detect the results via a single universal tag
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DNA chip array. The application of MIP to generate a haplotype
map of Chromosome 12 in CEU families (The International
HapMap Consortium 2003) as part of the Human HapMap project
has yielded 3,509,052 genotypes from 38,429 assays. In this
study we analyze the important features of the assay performance
that will enable MIP to be effectively used for many future large-
scale studies.

Results

MIP technology

The basic concept of MIP technology has been described previ-
ously (Hardenbol et al. 2003). Briefly, a single oligonucleotide
probe with recognition sequences at each terminus is hybridized
with a genomic target sequence such that it forms a circular struc-
ture, with the ends of the probe abutting. This leaves a single base
gap at the location of a SNP. This gapped-duplex is then tested in
four separate reactions, each with a single dNTP species present,
in which successful polymerization/ligation provides allelic dif-
ferentiation. The probes are subsequently released from the ge-
nomic DNA and those that have been covalently circularized in
the correct allele/nucleotide reaction combinations are amplified
using a “universal” PCR primer pair. Each amplified probe con-
tains a unique tag sequence that is complementary to a sequence
on the universal tag array. Tags have been selected to have a
similar Tm and base composition and to be maximally orthogo-
nal in sequence complementarity. Amplicons are fluorescently
labeled and the tag sequences released from the genome homol-
ogy regions using a restriction endonuclease treatment. The tags
are then detected using a complementary tag array.

Multiplex tag detection

We have greatly increased the complexity of the initial MIP assay
while maintaining the genotyping accuracy. A major limitation
in the use of conventional nucleic acid microarrays for genotyp-
ing or gene expression is the difficulty in controlling the speci-
ficity and uniformity of hybridization of biological sequences to
their complementary oligonucleotides on the array. This leads to
high levels of cross-hybridization and spurious signals in com-
plex mixtures. Therefore, previously reported multiplex SNP
genotyping assays (Matsuzaki et al. 2004) that use biological se-
quences in detection function only for detection of a small frac-
tion of the total possible SNP sequences in the genome.

We have used a molecular tagging (or barcoding) strategy
(Shoemaker et al. 1996), to enable very highly multiplexed as-
says. In the current study, a set of 20,000 sequences were devel-
oped as recognition probes, with minimal sequence similarity
within the set. In addition, the tags were designed with a narrow
range of melting temperatures and to avoid secondary sequence
structure. It was anticipated that these sequences would exhibit
minimal cross-hybridization properties, while maintaining a
tight dynamic range that would ensure the highest accuracy at
this stage of the assay detection scheme.

The performance of the 20,000 new tags was first compared
to a publicly available set of ∼16,000 tag sequences present on the
Tag3 GeneChip barcode arrays (Affymetrix). First, standard MIP
genotyping was performed using a 6615plex probe pool contain-
ing tags from the Tag3 set, and the assay products were analyzed
by two-color detection on Tag3 arrays (see below). Specificity was
evaluated by determining the number of noncomplementary (or
inactive) sequences on the array (n = 9666) having signal >10%

of the average signal level of the active array sequence features.
On average, each signal channel had 96/9666 (=1.0%) inactive
features that resulted from a >10% cross-hybridization signal.

Next, the experiment was repeated using the set of 20,000
21mers that we designed. Two arrays were designed using these
sequences; one with 6,000 tags (TrueTag 5k array) and another
with 12,000 tags (TrueTag 10k array). Performing the same ex-
periment described above on a TrueTag 10k array using a probe
pool containing 6072 probes led to 18 nonactive features with
signals >10% of the average active signal; a total of 0.3% of all
features. Thus, the new tag set exhibits a three-fold higher speci-
ficity than previous sets. This added specificity has allowed us to
obtain high accuracy genotyping data at 12,000plex (see below).

Cluster analysis

MIP data analysis has been improved by the development of a
robust data clustering algorithm. In previous studies using the
MIP technology, genotypes were processed from the raw data
using a simple thresholding process based on the ratio of signals
in the two expected allele channels, with data being rejected
based on the presence of high background signals in the other
channels. In this study, the new clustering algorithm declares
genotypes by identifying regions of high data density that rep-
resent the three possible genotypes using an Expectation-
Maximization (E-M) algorithm. This procedure allows entire data
sets of thousands of markers to be analyzed without the need for
any human intervention on a marker-by-marker basis. The algo-
rithm works in the one-dimensional space of contrast between
the different allele signals (Fig. 1). It assigns a probability for each
data point (sample) to belong to a given cluster according to the
probability distribution of the given cluster. Based on empirical
observations, the shapes of the cluster probability distributions
have been modeled by Gaussian distributions with non-Gaussian
tails.

The overall behavior of the algorithm is controlled by pa-
rameters that are used to reject unreliable data at two different
levels. The first level is to reject a given data point (sample)
within the context of a given marker. Here, the main criterion is
the relative probability of the data point belonging to its primary
cluster versus belonging to its secondary cluster. Data points
where this ratio is too low are considered ambiguous and hence
not called. In addition each data point is required to have a
minimum value for signal (sum of allele signals) with respect to
chip noise and also with respect to nonallele signal (sum of non-
allele signals).

The second level of discrimination is provided when the
algorithm also rejects markers as a whole whenever a marker is
deemed unreliable. The criteria here are based on the relative
dispersion of the clusters, e.g., markers with loosely defined clus-
ters are rejected. Since we do not use trio discordance (non-
Mendelian inheritance) as a measure of marker reliability, we are
able to use this measure as an unbiased estimate of the algo-
rithm’s overall accuracy. It is important to note that all of the
fixed parameters that control the algorithm are fixed for the en-
tire data set of x thousand markers times x hundred samples that
is being fit at one time. Hence trio discordance is a reliable mea-
sure of the accuracy of the entire data set.

Multicolor detection

The current advanced MIP assay uses four-color chip detection.
The methodology as originally reported used single color chip
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detection and four different arrays to score the four possible al-
leles in a 1500plex assay (Hardenbol et al. 2003). Next, an inter-
mediate two-color detection method was developed. In that ver-
sion, two fluorophores were used: one for A,C another for G,T.
The A and G channels are then pooled and hybridized to one
chip while the C and T channels are pooled and hybridized to a
second chip. This intermediate method imparts some of the ben-
efits of the four-color assay but necessitates two arrays.

A more streamlined analysis is now enabled by labeling each
of the four allele specific reactions with a spectrally distinct fluo-
rophore (Fig. 2). These reactions can then be pooled together and
hybridized to a single tag array. Fluorescent images are collected
using four different filters to collect emission from each single
fluorescent species such that the intensities from each of the
allelic reactions can be measured from a single chip feature. In
addition to significant chip cost savings, this method also has the
advantage of rendering the genotype calls resistant to possible
feature-to-feature variation in the arrays. A further benefit is that
signal ratios between alleles, which are critical to accurate geno-
typing, are rendered insensitive to feature saturation that can
otherwise lead to loss of linearity in response.

During this study, we tested both two-color and four-color
assays and showed that the four-color method was superior. For
all probe batches, a two-color protocol was implemented using
two arrays per individual. For batch 4, a four-color protocol was
also implemented using a CCD imager. Comparison of the data
demonstrates that the four-color assay generates more accurate
and more complete data (Table 1). Repeatability between two-
and four-color data is 99.8%.

Performance metrics for genotyping

The ideal genotyping technology would identify any chosen base
in the genome in all DNA samples with perfect accuracy. A series
of performance metrics are now commonly applied to measure
how close real data are to this ideal. “Conversion rate” is a mea-
sure of the SNPs in the genome that can be assayed and is a

function of both the quality of the SNPs chosen and the tech-
nology used to score them. In addition, some SNPs can be re-
jected in silico, prior to probe synthesis. “Call rate” for a given
marker is the percentage of DNA samples in a study whose geno-
type is successfully measured. For a set of converted SNPs, the
percentage of total genotypes returned across all markers is de-
fined as the “completeness” of the study. Finally, “accuracy” is
the percentage of these genotypes that are correct. Ultimately,
the quality of the genotype data is measured by the power that it
provides in the elucidation of genetic associations. A high quality
genotyping technology will have a power to find associa-
tions that closely approximates the power of the idealized tech-
nology.

We have evaluated the full set of performance metrics using
this new MIP assay and produced 38,429 working probes target-
ing SNPs on Chromosome 12 in six batches for the HapMap
project. Batches 1–3 were 6,000–8,000plex pools designed using
the Tag3 tag set (Affymetrix). Batch 4 was a 6,000plex and the
first set developed using the new tag set (TrueTag 5k), while
Batch 6 was the first batch to be designed for over 10,000 SNPs
using the expanded tag set (TrueTag 10k). As a result, these two
representative probe batches were chosen to analyze the perfor-
mance of the technology in detail. Each batch was genotyped on
95 samples consisting of 30 trios from the CEU collection and
five repeated samples to measure repeatability. Batch 4 was re-
peated using the four-color detection system as described above.
Table 1 summarizes the performance metrics of these two
batches.

Conversion rates were high regardless of multiplex level or
detection method. Here conversion rate is defined to be the frac-
tion of probes per batch that yielded strong signals with discern-
able clusters to indicate the different genotypes. As mentioned
previously, in silico design rates are relevant in assessing overall
SNP yield. More than ∼84.7% of all SNPs passed design criteria in
that they were unique in the genome. Importantly, cluster shape
and signal were the only parameters that were used to select

Figure 1. Calling genotypes based on cluster analysis of raw data. Each SNP in a multiplex assay results in four fluorescent signal values: two for the
two expected allele channels and two in background channels. Plotting the signal channels against each other (left) results in the formation of three
clusters. The plot on the left shows 50,000 data points across several thousand markers. In order to decouple the overall signal of the particular data
point from the contrast between the different allele signals, it is helpful to transform the data into a different space in which the sum of the signals in
both channels (S) is plotted on the y-axis and the projection of the individual data point onto the line of constant S (the contrast value C) is plotted on
the x-axis. The values of C range from �1 to 1 such that a value of �1 or 1 means signal in only one of the two channels while a value of 0 means
equal signal in each channel. A one-dimensional E-M algorithm can then be used to find the clusters of homozygous and heterozygous calls. The colors
have been automatically added by the cluster calling algorithm, which has identified the three clusters.
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converted probes. Repeatability and concordance (see below)
were not used to select for converted probes. As a result, the
measures of accuracy shown below are not biased by conversion
choices and represent the true accuracy of the method.

SNPs for which only one of two alleles can be detected,
termed “allelic drop-outs,” are an intrinsically rare property of
MIP since it uses a single probe per SNP. The allelic drop-out rate
was measured to be only 0.4% of assays by comparison to pub-
licly available data generated by other methods.

The call rate of a given probe is defined to be the number of
genotypes that were unambiguously clustered divided by the to-

tal number of genotypes attempted across all individuals. Com-
pleteness is the average call rate of converted probes. Complete-
ness is high and is again unaffected by multiplex level or detec-
tion method (Table 1).

Two measures of accuracy are possible for the data gener-
ated. The first is the data gathered from repeated samples. Such
data allow random errors to be measured when the same marker
gives nonconcordant data in repeated assays on the same indi-
vidual. By this metric, the MIP probes performed with high ac-
curacy. Repeatability ranges from 99.5%–99.9% across batches
(Table 1).

The second measure of accuracy is trio concordance. The use
of mother–father–child trios in this project was designed to allow
the accuracy to be monitored by looking at the Mendelian in-
heritance patterns across markers (see Methods section for de-
tailed description). This test is able to capture some forms of
systematic error that cannot be estimated by repeatability. Again,
the accuracy rates based on trio concordance indicate a high level
of data accuracy (>99.6%). Because the criteria for assay conver-
sion did not take into account the trio concordance rate or the
repeatability rate, these measurements are good predictors of the
overall accuracy in the data set.

It is important to note that all of these parameters, including
conversion rate, completeness, and concordance, are related
through parameters that can be changed in the clustering algo-
rithm used to assign genotypes. A permissive algorithm can re-
sult in high levels of completeness and conversion at the expense
of accuracy. In general, these changes are seen at the margin
between the bulk of the probes that are very complete with high
accuracy and the probes that fail to call. This is shown in Figure
3. Batch 6 is shown ordered along the x-axis such that the probe
with the highest call rate is plotted at the origin while the probe
with the lowest call rate is at the right. The call rate for each
probe across the full sample set is then shown for two different
choices of cluster parameters: A stringent set, which accepts only
calls very clearly in good clusters, and a more permissive set,
which accepts data at the periphery of clusters. What can be seen
is that the amount of missing data can be decreased at the cost of
making a small number of increased errors.

The optimal choice for this trade-off depends on the re-
quired use of the data. If single marker association is being used
for common SNPs, it may be appropriate to choose fairly permis-
sive clustering parameters because the gain in “usable” data

Table 1. A summary of the genotyping for two representative batches of the HapMap study

Batch
Detection
scheme

Probes
designed

Base-call
parameters

Probes
converted Conversion Repeatability

Trio
accuracy Completeness

4 2 color 6072 1 5469 90.1% 99.5% 99.6% 98.0%
6072 2 5127 84.4% 99.6% 99.7% 99.3%
6072 3 4706 77.5% 99.8% 99.9% 99.25%

4 color 6072 1 5729 94.4% 99.6% 99.6% 98.6%
6072 2 5416 89.2% 99.6% 99.7% 99.7%
6072 3 4984 82.1% 99.9% 99.96% 99.5%

6 2 color 12234 1 10924 89.3% 99.5% 99.7% 98.6%
12234 2 10341 84.5% 99.7% 99.7% 99.6%
12234 3 9517 77.5% 99.95% 99.9% 99.5%

Batch 4 contains 6072 probes and was genotyped across the population using a two-color detection method and then repeated using a four-color
detection method. Batch 6 contained 12,234 probes and was only genotyped using a two-color assay. The performance metrics are defined in the text.
Results are shown for each data set with varying choices of base-calling parameters. “Parameter set 1” optimizes the conversion rate, “Parameter set 2”
optimizes the completeness of the set of converted markers and “Parameter set 3” optimizes the concordance metrics as a surrogate for accuracy.

Figure 2. Schematic of the MIP assay process. MIP reactions are set up
adding an enzyme mix and genomic DNA to the probe pool. This mix is
then split into four tubes, each receiving a distinct nucleotide species.
After gap-filling and probe inversion, inverted probes are amplified using
common PCR primers. These amplicons are labeled using one of two
labeling processes. In the two-color labeling scheme (top), the A and C
reactions are labeled with one fluorophore while the G and T reactions
are labeled with a spectrally distinct fluorophore. The A and G reactions
are then pooled and hybridized to one tag array while the C and T
reactions pooled and hybridized to a second array. Both arrays are then
scanned using a GeneChip array scanner in two spectral channels to
generate four fluorescent signals for each tag. In the four-color labeling
scheme (bottom), each of the four reactions is labeled with a spectrally
distinct fluorophore. All four reactions are then pooled and hybridized to
a single tag array which is scanned using a GeneChip AT CCD imager in
four spectral bands. In both cases four images are generated containing
the four allele signals for each SNP marker.

Hardenbol et al.

272 Genome Research
www.genome.org



quantity is more advantageous than the small number of errors
that are being made. When rare markers (Kang et al. 2004) or
when multimarker haplotypes are being built (Kirk and Cardon
2002), the results will be much more sensitive to genotyping
errors.

Table 1 shows the effect of emphasizing conversion rate,
completeness, or accuracy in choosing cluster parameters. Con-
version rates of >90% are possible with accuracy rates of ∼99.6%.
In this case ∼1.5%–2% of the data are “missing,” as they are too
ambiguous to call. Alternatively, accuracy levels of >99.9% can
be achieved by retaining only the best markers (conversion rates
of 77%–82%). A compromise can be reached by optimizing a set
of markers with high completeness, which results in intermedi-
ate levels of conversion and accuracy.

The impact of these compromises is best exemplified in the
context of a model genotyping experiment. Figure 4 shows the
effect of inaccurate or incomplete data from an association study
for which the causative alleles are of varying frequency as shown
on the x-axis. Given a genetic disease model (genetic relative risk
GRR = 2 in a multiplicative model of disease) the number of pa-
tients and controls required to achieve an 80% power is plotted
assuming single marker allelic tests are performed. As can be
seen, common marker associations are relatively insensitive to
missing data and error rates as high as 1%. On the other hand, if
rare SNP markers are under study, accuracy is very important.
Making an error in 1% of the data would double the population
size required to find a 1% frequency marker in this model. Simi-
larly, missing data are also more damaging when looking for
signals in less frequent markers. Overall, the performance of all

the converted markers in this study is sufficient to handle the full
scope of association study applications with minimal loss of
power relative to the ideal technology.

Discussion
This report of an advanced Molecular Inversion Probe technol-
ogy now allows highly efficient, accurate, and low cost genotyp-
ing of targeted SNPs at levels >10,000plex. The unique features
described in this study enable this technology to be scaled from
1,000plex levels to >10,000plex levels without any loss of perfor-
mance in terms of accuracy completeness or conversion rate. At
the same time the development of a four-color scanning solution
for the tag arrays has resulted in decreased processing times and
chip costs while insulating genotype calls from feature-to-feature
chip noise.

This technology can be applied to complex genetic analysis
in two basic ways. First, comprehensive LD mapping can be per-
formed using a whole-genome HapMap tagging approach; sec-
ond, comprehensive direct detection of potentially functional
SNPs in coding and conserved regions is possible. As shown
above, maintaining a high level of accuracy and completeness is
critical when analyzing rare SNPs or haplotypes. The importance
of being able to target specific SNPs, and to achieve a high con-
version rate, is clear in the case of direct detection of causative

Figure 4. The effect of inaccurate genotypes (A) and incomplete geno-
typing (B) on the number of patients required to have 80% power to find
a genetic association. A genetic model has been assumed in which the
relative risk of the causative allele (GRR) is two. The effect is assumed to
be multiplicative. The causative allele frequency is plotted on the x-axis.
The largest loss of power comes with making inaccurate calls for markers
with low frequency. By contrast, incomplete data result in smaller loss of
power, which is felt across the allele frequency spectrum. The data from
the MIP assay are accurate enough to be used for the investigation of rare
alleles without significant loss of power.

Figure 3. The effect of clustering parameters on performance metrics.
In this plot, the markers for Batch 6 are ordered along the x-axis such that
the marker with the highest call rate is at the origin, while the worst
performing of the ∼12,000 markers is at the right. The y-axis shows the
call rate for each of these markers across 95 individuals. The markers that
exhibit poor call rates are called nonconverted and are shown in the gray
area. The red curve shows a choice of cluster calling parameters that
emphasizes high completeness by accepting calls on the periphery of
clusters. More markers show very high call rates and the amount of
missing data shown by the red shaded region is minimal (99.2% com-
pleteness). The overall accuracy as measured by trio concordance shows
that a small number of erroneous calls are being made (99.64% concor-
dance). If one wishes to eliminate these incorrect calls, the base caller can
be tuned to be more stringent. This choice allows very high accuracy
(∼99.9% trio concordance) while causing more missing data (blue
shaded region). The choice of cluster calling parameters should thus be
chosen according to the intended use of the data.
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SNPs. SNPs in functional regions tend to be rarer, leaving most
without an alternative, common surrogate in high LD. This fail-
ure to convert a SNP and its concomitant loss of power to detect
its genetic effect is directly proportional to the conversion rate.
Hybridization-based methods whose conversion rates are signifi-
cantly <50% will be unable to achieve high power to assess these
SNPs. The conversion rates demonstrated in this study indicate
that >85% conversion of SNPs in unique regions of the genome
is possible. Furthermore, a second manufacturing and design pass
has been shown to recover approximately half of the uncon-
verted probes that failed due to failed oligo synthesis, secondary
structure in the probe–tag complex, etc. (P. Hardenbol, unpubl.).
With two rounds of synthesis, it should be possible to achieve
conversion rates >90% and to very comprehensively analyze
these SNPs.

The effect of high assay conversion rates on linkage disequi-
librium mapping studies such as the HapMap is important but
more subtle. The very nature of an LD mapping method presup-
poses a degree of redundancy in the choice of markers as some
SNPs will be in high LD with each other. However, the ability to
convert SNPs at a high rate does confer several advantages in
large-scale HapMap approaches. First, if one cannot predict
ahead of time which SNPs will fail due to a particular sequence
context, a low conversion rate will increase the expense and ef-
fort required to build a map as multiple redundant SNPs will need
to be attempted to find scorable tagging SNPs. This effort is oner-
ous if several population specific maps are to be constructed.
Secondly, the number of surrogates that exist for a given SNP will
depend on the density of markers that one is choosing from. The
first phase of the HapMap project is expected to produce an in-
formative SNP every 5 kb. At this density, there will be a large
number of SNPs that are not in LD with any others. Failure to
convert these SNPs will lead to loss of power. Calculating the
impact of these gaps on an association study is difficult. Larger
haplotypes for which there are multiple surrogates will cover
more of the genome and thus add more power than a singleton
SNP in a region of high recombination, so the loss of power will
not be directly proportional to the SNPs missed as in the case of
direct detection. Nevertheless, it is clear that the task of building
a comprehensive HapMap product is greatly simplified by a tech-
nology that can retain a high rate of assay conversion while
achieving high levels of multiplexing.

Further increases in the levels of multiplexing for this assay
are likely. Tag set development is proceeding and early tests on a
set of 40,000 tags indicate that a similar amount of cross-
hybridization noise is achievable (data not shown). We believe
that a set of 100,000 tags should be a realistic goal in light of
recent advances in array technology. The MIP assay itself has
shown no evidence of producing nonspecific probe inversion as
we have moved to higher levels of multiplexing. Signal-to-noise
levels have remained constant between 6,000plex and
12,000plex assays. It should be noted that the total mass of ge-
nomic DNA in the reaction is 40 times the probe amounts used
in a 12,000plex reaction. As a result the probe–probe interactions
that are increasing with multiplexing are still at a level far below
the probe–genome interactions. It seems reasonable to assume
that another order of magnitude in multiplexing should be
achievable. Indeed, preliminary results using 24,000plex MIP re-
actions have shown highly accurate results (data not shown). The
final challenge is in maintaining sufficient detection signal as
one splits a single amplification reaction over increasingly large
numbers of amplicons. Several means are available to address this

issue including: concentration of larger PCR reactions, brighter
fluorescent labels, more sensitive scanners, increased hybridiza-
tion times, and increased oligo density in arrays. Taking all of
these considerations into account, we believe that this technol-
ogy will be able to be scaled to the level of 100,000plex in the
near future.

Methods

Assay design
Batches of SNPs on Chromosome 12 were chosen according to
criteria that emphasized even spacing. Once a batch of SNPs has
been selected, a homology sequence is selected based on Tm op-
timization that is on average 40.4 bases long that is centered over
the SNP and is complementary to the genome. This sequence is
BLASTed against the genome to determine whether the sequence
is unique in the genome, where unique is defined as an exact
match to only one position. If the exact sequence appears more
than once, the probe is not synthesized. This is the only filter
used. Next, a tag sequence is added that is unique among the
batch of assays and complementary to a feature on the detection
chip system. No consideration is given to the degree of comple-
mentarity of sequences within the batch. Probes can target over-
lapping sequences since the genomic DNA is not saturated with
hybridized probe. All probe batches were manufactured by Par-
Allele Bioscience using its proprietary MIP probe synthesis pro-
cedures and are commercially available (MegAllele kit, ParAllele
BioScience). This process is a pooled procedure that results in a
pool of up to 12,000 probes that are tested using pooled quality
control procedures before being sent to Baylor College of Medi-
cine.

Genotyping reactions
The genotyping reactions were carried out using the standard
protocols recommended by the manufacturer at the Baylor Col-
lege of Medicine, Human Genome Sequencing Center. MIP as-
says are carried out in 96-well plates using 12 individuals per
plate for each of four allele channels using the MegAllele geno-
typing kit (ParAllele BioScience). The DNA samples were ob-
tained from the Coriell collection (Coriell Institute) and con-
sisted of trios from the CEU family collection. A full list of these
samples is available at the HapMap Web site (www.hapmap.org).
Each of the four MIP reactions was mixed with 500 ng of ge-
nomic DNA.

Two-color assay execution
After amplification and tag cleavage, the products were hybrid-
ized to two GeneChip Tag Arrays: TrueTag 5k or TrueTag 10k
(Affymetrix) and stained using a two-color staining kit from
ParAllele. The components were decoded by measuring the fluo-
rescence signals at the corresponding complementary tag site on
the DNA array. Four intensity values for each probe are generated
using a GeneArray scanner (Affymetrix) using two arrays in two
fluorescent channels (phycoerythrin and fluorescein) using the
manufacturer recommended protocol (ParAllele BioScience). The
A and G reactions were pooled on one chip while the C and T
channels were pooled on a second chip. For each tag the two
values for the expected allelic bases were compared to determine
whether the sample was homozygous or heterozygous for the
given SNP, and the two non-allele bases were compared to the
allele bases to determine the signal-to-noise for the probe. The
two non-allele bases serve as internal controls that were used to
improve call rate and to reduce false calls due to missing, de-
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graded, or noisy probes. The data from each image were tracked
through a LIMS system to a probe pool and a DNA sample. This
analysis was carried out using the MegAllele software package
that is commercially available from ParAllele BioScience.

Four-color assay execution
The four-color data shown for Batch 4 were carried out using a
four-color MegAllele assay kit from ParAllele Bioscience, using its
commercially available four-color staining kit. The scanner used
is a CCD camera with a broad band excitation lamp. This instru-
ment (GeneChip AT Scanner, Molecular Devices) is commercially
available for this assay from Affymetrix. Data from each chip are
collected using four different filters to yield the four images that
are processed in a manner identical to the data from the two
chips that are used in the two-color protocol.

Data
This entire data set is now available publicly by searching Chro-
mosome 12 at (www.hapmap.org). Trio concordances were cal-
culated by tracking the concordance of each chromosome in a
child in order to glean some information from the large numbers
of markers for which at least one parent is heterozygous for a
given marker. In this algorithm, a trio with two homozygous par-
ents contributes two concordance tests (both child alleles pre-
dicted), a trio with a single heterozygous parent contributes one
test (one child allele predicted), and trios with two heterozygous
parents are uninformative and are not considered. Sixty-five per-
cent of all chromosomes called in this study inform trio accuracy
using this algorithm.
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